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Abstract

We use dissipationless N-body simulations to investigate the correlation between dark matter
and galaxy distribution in the Universe. The dark matter haloes identified in the N-body
simulations are populated with galaxies according to the Halo Occupation Distribution. We
then use galaxy-clustering and galaxy-galaxy lensing measurements for Luminous Red Galaxies
from the Sloan Digital Sky Survey to fit for the free parameters of the occupation statistics. In
this vein we obtain realistic galaxy catalogues and use them for our examination of the cross-
correlation coefficient between the LRGs and the matter. As our key result we propose and
test a new method to constrain the dark matter autocorrelation from observable galaxy-galaxy
lensing and galaxy clustering. Most of our conclusions are based on the projected correlation
function w(R), which leads us to quantify its dependence on redshift space distortions. As a
side project we implement a fast grid based method for the calculation of correlation functions
and their projections from N-body simulations.
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CHAPTER 1

Introduction

This first chapter will start with a short description of the major scientific cognitions that lead
to the current understanding of the Universe, before we proceed with a summary of important
events in the cosmic history. Finally we will try to motivate our investigations.
The organisation of the following chapters is as follows: In §2 we will lay down the fundamentals
of general relativity and cosmology in a smooth homogeneous Universe, before we proceed to
the origin of perturbations on the smooth background Universe in §3. The discussion in §4 will
then be devoted to the statistics, frequently used to describe the cosmological random fields,
especially power spectra and correlation functions. The formation of non-linear structures will
be treated in §5, where we also derive the abundance of dark matter haloes and comment on
the halo model of large scale structure. Gravitational lensing, especially weak lensing will be
covered in §6. This chapter also provides the necessary formalism for our galaxy-galaxy lensing
analysis. All this theory is then used in §7 to develop the techniques necessary for our analysis,
especially for the extraction of correlation functions from the simulations and for the adaption
of the occupation statistics. Finally we will describe our findings in §8 and discuss them in §9.
Readers familiar with the concepts of cosmology should directly jump to §6 on Page 39, where
we start to present our own achievements.

1.1 Historical Context

Mankind was observing the night sky for thousands of years but it was not before the 16th and
17th century that physicists like Galileo Galilei, Johannes Kepler and Isaac Newton developed
a mathematical theory of gravitation which could coherently account for the planetary orbits.
This very successful theory of gravitational force turned out to be the weak field limit of general
relativity, which was presented by Albert Einstein in 1915. Based on his earlier work on special
relativity, he developed a geometric theory of gravity, which abandons the idea of gravity acting
as a force and rather considers it as a property of a curved four dimensional spacetime. The
core of the mathematical realisation of this theory are the Einstein field equations, relating
curvature of spacetime to its energy content. The correct prediction of the excess precession
of Mercury’s orbit around the sun was a first confirmation for the new theory. Another valida-
tion was published in 1919, when an expedition lead by Arthur Eddington measured the light
deflection by the sun during a total eclipse.
At that time astronomers also started to look beyond our local galaxy and realised that the
mysterious observed nebulae were nothing more than distant galaxies. Beginning with Edwin
Hubble’s observations in the 1920s, first quantitatively relevant measurements of the proper-
ties of the Universe became available. After a decade of observations Hubble discovered, in
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1929, that distant galaxies are receding from us with a velocity proportional to their distance.
Independently, Alexander Friedmann in 1922 derived the so called Friedmann equations from
the Einstein field equations, using the metric of a homogeneous and isotropic spacetime and
the energy momentum tensor of a perfect fluid. The Friedmann equations in fact could predict
the expansion that was observed by Hubble.
Another milestone for todays understanding of the evolution of our Universe was the discovery
of the cosmic microwave background (CMB) radiation by Penzias & Wilson in 1964. This
radiation, which shows an almost perfect Planckian spectrum of TCMB = 2.725 K, is a remnant
from the early hot epoch of the Universe when the interstellar gas was still ionised and scattered
photons efficiently. At a time known as recombination the electrons and nuclei formed neutral
atoms, leading to an unscattered propagation of the photons, which is what we detect today.
The cosmic microwave background explorer (COBE) experiment, starting in 1989, measured
the anisotropies of the CMB and found fluctuations in the temperature of ∆T/T ≈ 10−5. This
was consistent with the inflationary paradigm, introduced by Alan Guth in 1981 to describe the
large scale homogeneity and the flatness observed today. In addition, inflation can account for
the seeds of structure formation.
All these observational efforts and theoretical models went hand in hand and finally led to a
paradigm, which now is known as the standard model of cosmology and the Lambda Cold
Dark Matter (ΛCDM) cosmology. Its main statements are:

• The spacetime of our Universe is globally flat.

• Approximately 25% of the total energy content of the Universe is in the form of matter,
but only one sixth of the matter is of baryonic nature.

• The rest of the energy content is unknown and attributed to dark energy.

However, as a consequence of this model we are in the miserable situation that we are not able
to observe 95% of the energy content of the Universe, since it is made up of dark ingredients.
Dark energy, first introduced as a possible cosmological constant in the field equations by
Einstein, became again popular in the last decade to account for the accelerated expansion of
the Universe. It is a key question of cosmology to determine the nature of this exotic field,
which comes along with negative pressure. Having said that, we furthermore have to deal with
dark matter, an invisible, i.e. noninteracting kind of matter, which was introduced to describe
the flat galaxy rotation curves observed by Vera Rubin in th 1960s. So far there has not been
evidence for direct detection of dark matter and there has been a whole industry inventing
modified versions of gravity in order to remedy the dark components.
Today we are not claiming to have a complete understanding of the processes, which govern our
Universe – we are working on transient ideas and try to improve them. Cosmology has to deal
with physical processes on scales of the observable Universe down to scales relevant for particle
physics, and time intervals which span the whole age of the Universe. Due to the complexity we
have to adopt a lot of simplifying assumptions to make the system mathematically tractable. If
we just consider the gravitational forces that form the large scale structure of the Universe, we
soon come to a point where perturbative calculations break down and a non-linear numerical
treatment has to be used. The problems become even more involved as soon as we consider
the baryon physics, which leads to the formation of stars and galaxies. This complexity has lead
to an intensive use of numerical simulations over all scales. Furthermore, the field of research
is separated into branches dealing with large scale structure, individual haloes, galaxies and
galaxy clusters down to star and planet formation. Our work will be mainly concerned with the
large scale structure of the Universe.

1.2 Cosmic Timeline

Table 1.1 shows a short curriculum vitae of our Universe, which we will explicate in the fol-
lowing. The Universe started with a singularity known as the big bang. We don’t have a very
detailed understanding of what happened in the first 10−43 s of the Universe. Most probably
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a theory of quantum gravity, which describes the unification of the four fundamental forces,
will be needed to describe this time. However, this hot, small Universe started to expand and
by doing so it cooled. At some point, the temperature decreased so much, that the quark
gluon plasma underwent a phase transition to form the colour neutral baryons and mesons,
a process known as quantum chromodynamics phase transition. A general appearance in
cosmic history is that processes drop out of equilibrium, since their crosssections decrease with
decreasing cosmic temperature. This caused for instance a decoupling of the neutrinos and
a freeze out of the neutron to proton ratio. Later on, these constituents started to form
the lightest elements by nuclear fusion. This happened during the epoch of nucleosynthesis,
for which predicted element abundances compare remarkably well with observations. Apart
from being globally neutral, at this time locally there were still free electrons and nucleons.
This era ended with recombination at redshift z ≈ 1100, when the free electrons and the
nucleons started to combine to form neutral atoms. At this point the photons stopped to
interact effectively with the electrons and the opaque Universe became more less transparent
for the radiation. This event is imprinted in the Universe by the last scattering surface or
cosmic microwave background (CMB). The photons which were released during recombi-
nation could travel relatively undisturbed to the present time, while they were cooling to give
the astonishingly homogeneous blackbody radiation field of temperature TCMB = 2.75 K. This
homogeneity is an important constituent of the cosmological standard model, but there are
small temperature inhomogeneities in the temperature field that are an imprint of the slightly
inhomogeneous matter distribution at recombination.
These inhomogeneities grew by the gravitational evolution and once they were large enough,
first dark matter haloes were formed by the process of gravitational collapse. Subsequently
these haloes merged and formed larger and larger haloes. The baryonic gas initially followed the
dark matter and accreted in the dark matter potential wells. There it could reach sufficiently
high densities to cool efficiently and to condense. The first galaxies were then created by star
formation from the cold gas.

Event T z t

Now 2.73 K 0 14 Gyr
Formation of first structures 140 K 50 14 Gyr
Recombination 300 K 1100 500000 yr
Matter-radiation equality 9500 K 3500 20000 yr
Nucleosynthesis 4× 108 K 1× 108 1× 103 s
Baryogenesis 1× 1012 K 1× 1012 1× 10−5 s
Inflation ends 1× 1027 K 1× 1027 1× 10−32 s
Quantum gravity 1× 1032 K 1× 1032 1× 10−43 s

Table 1.1: Timeline of events in the history of the Universe [Liddle & Lyth, 2000, Rich, 2001]. This
table is thought as an overview and quoted values should not be taken at face value.

1.3 Motivation

According to the current understanding of our Universe, the main ingredients are dark matter
and dark energy. Due to their dark nature both fields are not observable directly and indirect
methods have to be devised to infer the distribution of dark matter and dark energy. Hence
it is important for current and future observations to develop a detailed understanding of how
well the luminous baryonic matter in our Universe traces the dark matter.
Once the data of large galaxy redshift surveys such as the Sloan Digital Sky Survey (SDSS)
[York et al. , 2000] or the 2dF Galaxy Redshift Survey (2dFGRS) [Colless et al. , 2001] became
available, studies of the clustering properties of galaxies as a function of luminosity and colour
were possible. Galaxies are believed to form in the dark matter haloes [White & Rees, 1978]
and consequently the clustering of the galaxies will be related to the clustering of haloes as
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predicted from numerical simulations or the Press & Schechter approach. An open question
is how halo mass and galaxy morphology are related, which galaxies reside in a certain kind of
halo and how they are distributed. An answer to this question should come from a theory of
galaxy formation, but there is not yet a coherent picture. Hence statistical models of galaxy
distribution have to be used to investigate the correlation between the galaxies and the dark
matter.
So far surveys have in most cases been analysed under the assumption that galaxies are a
biased tracer of the dark matter density field. But this bias is a unknown parameter, which in
addition seems to be scale dependent [Smith et al. , 2007]. Hence it is interesting to look for
a way that enables direct inference to the dark matter distribution. One of the most promis-
ing observational direct probes of the dark matter on cosmological scales is the gravitational
lensing. The lensing essentially probes small, non-linear scales and is hence complementary to
clustering measurements that probe large, linear scales.
Since the first attempts to detect the galaxy-galaxy lensing by [Tyson et al. , 1984] the quality
of the data has been improved by deeper and wider surveys. Galaxy-galaxy lensing has now
been measured with relatively high signal-to-noise and as a function of a wide variety of prop-
erties of the lens galaxies [Guzik & Seljak, 2002, Mandelbaum et al. , 2006b]. It has become
clear in these studies that galaxy-galaxy lensing contains much information about the mass
distribution around galaxies and has the potential to measure dark matter halo radii, shapes,
concentrations and masses [Mandelbaum et al. , 2006c, Mandelbaum et al. , 2008].
The interpretation of the signal in terms of the link between galaxies and dark matter is however
complicated by the fact that lensing is only detectable by stacking the signal from many lenses.
Theoretical modelling of the galaxy-galaxy lensing has been done both with numerical simula-
tions [Hayashi & White, 2007] and with the halo model [Guzik & Seljak, 2001]. It was shown
that the signal can be well reproduced assuming an NFW profile and simple models for the halo
occupation statistic. The combination of lensing and clustering seems to hold the potential to
put constraints on cosmological parameters [Yoo et al. , 2006, Cacciato et al. , 2008].
In addition to the direct use of galaxy-galaxy lensing and clustering for cosmological param-
eter estimation one could use the projected lensing and clustering to determine the rela-
tive bias, and from that derive the bias of the galaxy sample with respect to the matter
[Seljak & Warren, 2004, Bonoli & Pen, 2008]. Usually the clustering is measured with higher
statistical significance, but due to the lack of bias one is not able to infer the amplitude of
the matter correlation. Bias measurements are usually performed on large, linear scales, but if
one would be able to recover the linear galaxy-matter and galaxy-galaxy correlations on small
scales, one should be able to recover the bias already on scales around 10 h−1Mpc.
For all these studies it is important to develop an understanding how well the galaxies trace the
dark matter distribution. Cosmological simulations of the dark matter density field are a stan-
dard tool to investigate the non-linear evolution of the collisionless dark matter field. Despite
their statistical power in describing the large scale structure of the Universe, these simulations
have the disadvantage that they are not providing the distribution of the galaxies probed in
cosmological surveys. Consequently it would be of great benefit to supplement the the simula-
tions with information about the galaxies residing within the dark matter haloes. Such galaxy
catalogues can help to extend the theoretical investigations on haloes to observable quantities.
We consider the Luminous Red Galaxies (LRGs), a subset of the galaxies observed with the
Sloan Digital Sky Survey (SDSS) for our investigations. These galaxies are believed to reside
in the most massive dark matter haloes of the Universe, which can be probed in large scale
cosmological N-body simulations with sufficient accuracy. The dark matter haloes are popu-
lated with galaxies according to the Halo Occupation Distribution (HOD). In order to obtain
reasonable galaxy catalogues we fit the parameters of the HOD using galaxy clustering and
galaxy-galaxy lensing measurements. The final goal of our investigations is to devise a method
that can recover the dark matter correlation from observable quantities.
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To conclude we will summarise the main goals of this thesis:

1. Develop a fast algorithm for calculation of correlation functions from the N-body simu-
lations and their projections on scales down to Rmin = 0.1 h−1Mpc.

2. Populate the dissipationless simulations with galaxies according to the halo occupation
distribution and find the parameters that can reproduce galaxy-galaxy lensing and clus-
tering for two LRG samples from the SDSS.

3. Use these galaxy catalogues to investigate how well the dark matter correlation function
can be recovered from the lensing and clustering measurements.

4. Investigate the effect of redshift space distortions on the projected correlation function.
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CHAPTER 2

The Expanding Universe

It will be crucial for the understanding of the concepts used in this work to be familiar with
the basic ideas of general relativity and the expanding Universe. Hence we will start with a
brief introduction of general relativity. We refer the reader to standard textbooks on general
relativity [Carroll, 2004] for a more detailed treatment. We then consider the solutions of the
Einstein equations, that are believed to describe our Universe. Afterwards we will devote a short
section to distances and luminosity measures, we will need later on. Finally we will comment
on the nature of dark matter and describe in brevity the most viable dark matter candidates.

2.1 Fundamentals of General Relativity

The basic and simple principle which underlies general relativity (GR) is the equivalence prin-
ciple:

In small enough regions of spacetime the laws of physics reduce to those of special
relativity, it is impossible to detect the existence of a gravitational field by using local
experiments. In a freely falling local frame all physical processes look as if there was no

gravitation.

In special relativity one is used to inertial or Minkowski frames, which are unaccelerated with
respect to each other but there is no distinguished frame which could be considered as a fixed
static reference. Similarly in GR we have that gravity is inescapable as there is no gravitational
neutral object. So all test bodies evolve under the influence of gravity and we have no fixed
object w.r.t. which we could define an acceleration due to gravity. Consequently we give up
the idea of gravity acting as a force but rather consider it as curvature of spacetime and define

unaccelerated ≡ freely falling.

But the property of being unaccelerated will only hold for very small (in fact infinitesimally
small) regions of spacetime. Therefore we won’t be able to define a large inertial frame, which
would enable us to define such things as relative velocities of far away objects. We have to
restrain ourselves to local inertial frames.
We come to the conclusion that we can interpret the spacetime as being a curved manifold
due to the following reasons:

• In small regions of a curved manifold we can establish Riemann normal coordinates for
which the metric is Minkowski and the first derivatives of the metric vanish. In this
coordinates the laws of physics look like those in flat Minkowski space.
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• The result of parallel transporting a vector on a curved manifold depends on the way
taken. This is a representation of the inability to compare vectors at widely separated
regions in general relativity.

Now that we know which mathematical background can describe the spacetime, we have to
consider the objects which live on this manifold, vectors and tensors. Tensor calculus essentially
states that physical laws which are valid in flat space, will be true in any coordinate system if
they are written in tensorial form and partial derivatives are replaced by covariant derivatives.
The covariant derivative is constructed to reduce to the usual partial derivative when applied
to scalars and to obey Leibniz rule. Application on a vector reads as

∇µV ν = ∂µV
ν + Γ νµλV

λ. (2.1)

Here we introduced the so called connection or Christoffel symbols, which can be derived from
the metric gµν if the covariant derivative is metric compatible and the connection is torsion
free.1

Γ σµν =
1

2
gσρ (∂µgρν + ∂νgµρ − ∂ρgµν) (2.2)

In flat space force free particles move on straight lines ẍ = 0, which can be generalised to
obtain the geodesic equation

d2xν

dλ2
+ Γ νσρ

dxσ

dλ

dxρ

dλ
= 0, (2.3)

where λ is an arbitrary parametrisation of the path. So far we considered how a curved
spacetime influences the motion of test particles and how the connection can be derived from
the metric. As a next step we have to consider how the energy content of the spacetime,
described by the energy-momentum tensor Tµν , influences the curvature. To do so it will
turn out convenient to introduce Riemann tensor

Rµνσρ = ∂σΓ
µ
ρν − ∂ρΓ µσν + Γ µσλΓ

λ
ρν − Γ

µ
ρλΓ

λ
σν , (2.4)

as well as the Ricci tensor, Ricci scalar and Einstein tensor

Rµν = Rγµγν , R = Rµµ, Gµν = Rµν −
1

2
Rgµν . (2.5)

The field equations which determine the dynamics of the spacetime are known as Einstein
equations and can be derived from a weak field equivalence to Newton and Poisson equations
or equivalently from an action principle.

Gµν = 8πGTµν + Λgµν (2.6)

The last term on the right hand side is the so called cosmological constant. It was introduced
by Einstein in order to find a static solution of the Universe. Lateron he called this the “Biggest
blunder” of his life but, as we will see below, today there is striking evidence for a nonzero value
of this constant.

2.2 Fundamentals of Cosmology

Assuming the validity of general relativity we have to make a further assumption in order to
obtain a solution of the Einstein field equations that describes the Universe. This assumption
is called the Copernican principle and states that our Universe is homogeneous and isotropic.
Here isotropy says that the space looks the same irrespective in which direction one looks and
homogeneity states that it looks the same irrespective from where one looks. The assumption
implies that we are in no way special, we are sitting in an average galaxy and hence we are

1Here we used Einstein summation convention were equal upper and lower indices are summed over
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observing an average representation of the Universe. These statements are for sure only true
if we average over local inhomogeneities, such as galaxies and clusters of galaxies, and the
smoothing scale is taken to be around 100 h−1Mpc.
Einstein first tried to find a static solution to his field equations but as observations implied
there is a recession of far away galaxies. So we have to drop the assumption of a static
spacetime and replace it by a spacetime Υ which is homogeneous and isotropic in space but
not in time. Hence we decompose it into a set of maximal symmetric spacelike slices Σ and
the time component Υ = R×Σ. The line element of this spacetime can be expressed as

ds2 = −dt2 + a2(t)γi jdu
iduj . (2.7)

Here we introduced the scale factor a, which is by convention set to unity today a0 = 1, and
used comoving coordinates, which are free of cross terms with the time component. The
maximal symmetric spatial metric γi j should obey spherical symmetry. This symmetry can be
used to derive the general form of the Robertson Walker metric

ds2 =− dt2 + a2(t)

[
dr2

1−Kr2
+ r2dΩ2

]
. (2.8)

Here K describes the spatial curvature of the Universe and the angular part of the metric is
given by dΩ = dθ2 + sin2 θdφ2. We have to distinguish three cases:

open Universe (K < 0; ρ < ρcr it ; Ω < 1) There is constant negative curvature on Σ and we
can set r = SK(χ) = (−K)−1/2 sinh

[
(−K)1/2χ

]
.

γi jdu
iduj = dχ2 + (−K)−1/2 sinh2

[
(−K)1/2χ

]
dΩ2

flat Universe (K = 0; ρ = ρcr it ; Ω = 1) There is no curvature on Σ yielding the Euclidean
metric and r = SK(χ) = χ.

γi jdu
iduj = dχ2 + χ2dΩ2 = dx2 + dy2 + dz2

closed Universe (K > 0; ρ > ρcr it ; Ω > 1) There us positive curvature on Σ and we can set
r = SK(χ) = K−1/2 sin

[
K1/2χ

]
to obtain the metric of a three sphere.

γi jdu
iduj = dχ2 +K−1/2 sin2

[
K1/2χ

]
dΩ2

The meaning of ρcrit and Ω will be described below and is included in this overview for the sake
of completeness. All these three cases can be conveniently expressed as

ds2 = −dt2 + a(t)2
[
dχ2 + SK(χ)2(χ)dΩ2

]
. (2.9)

So far we dealt only with the metric of the spacetime, but in fact we are interested in the effect
of matter on the spacetime, especially on the time evolution of the scale factor. To examine
this we will use perfect fluids to model the energy sources present in our Universe. We consider
the rest frame in which the matter is isotropic and therefore at rest in comoving coordinates
and has velocity Uµ = (1, 0, 0, 0) to write the energy-momentum tensor as

Tµν =(p + ρ)UµUν + pgµν , (2.10)

T µν =diag(−ρ, p, p, p), (2.11)

where ρ is the density and p the pressure. To proceed in this topic it is necessary to assume
an equation of state in oder to close the set of equations. Most sources of energy obey the
following simple equation of state

p = wρ. (2.12)
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The time evolution of the energy density of the different species can be derived from the first
component of the energy-momentum conservation

∇µT µ0 = −∂0ρ− 3
ȧ

a
(ρ+ p)

!
= 0⇒

ρ̇

ρ
= −3(1 + w)

ȧ

a
. (2.13)

Integrating this equation we obtain for the time dependence of a species described by the
equation of state w

ρ ∝ a3(1+w) (2.14)

Using the Einstein field equations we can now derive the Friedmann equations

ä

a
= −

4πG

3
(ρ+ 3p) (2.15)

(
ȧ

a

)2

=
8πG

3
ρ−

K

a2
(2.16)

These equations describe the so called Friedmann-Robertson-Walker Universe. They can
be rendered into a simpler functional form if we introduce the Hubble parameter

H :=
ȧ

a
, (2.17)

and the critical density

ρcrit :=
3H2

8πG
. (2.18)

All densities can then be rewritten in terms of this critical density using the density parameter

Ωi =
ρi
ρcrit

. (2.19)

The total energy content can then be expressed as

Ωtot = Ωm + Ωr + ΩΛ. (2.20)

Using above definition Equation (2.16) reads as

Ωtot − 1 =
K

H2a2
. (2.21)

So we see that the sign of the spatial curvature is completely determined by the total energy
density.
We will now in brevity mention the different sources, which contribute to the energy density of
the Universe

dust w = 0: Collisionless, non-relativistic matter. Universes whose energy density is mainly
influenced by dust are called matter dominated and the time evolution of the matter is
given by ρm ∝ a−3.

radiation w = 1/3: The energy-momentum tensor Tµν from electrodynamics is traceless and
thus we have ρr = 3pr. This model can be used for electromagnetic fields or massive
particles with v ≈ 1. A Universe whose energy density is mainly influenced by radiation
is known as radiation dominated.
The number density of photons decreases in the same way as for massive particles, but
the photon energies are suffering from an additional redshift by a−1 and we finally obtain
ρr ∝ a−4.

vacuum w = −1: Introducing vacuum energy is equivalent to a cosmological constant in
Einstein equations and yields ρΛ ∝ a0

ρ = −p =
Λ

8πG
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curvature The curvature can be interpreted as another type of energy and yields

ρc = −
3K

8πGa2
⇒ Ωc = −

K

H2a2

In terms of the above defined quantities we can write the second Friedmann equation as

H(a)2 = H2
0

[
Ωma

−3 + Ωra
−4 + ΩΛ + Ωca

−2
]
, (2.22)

where H0 is the present day value of the Hubble parameter. The uncertainty in H0 is commonly
expressed as H0 = h 100 km s−1 Mpc−1. It is useful to consider the analytic solutions which
exist for some simple cases with vanishing curvature in order to develop some intuition about
the time scales involved. If we have a radiation dominated Universe we obtain

a ∝ t1/2 ⇒ t =

√
3

32πGρ
, (2.23)

whereas in the case of a matter dominated Universe, also known as the Einstein-de-Sitter
Universe, we obtain

a ∝ t2/3 ⇒ t =

√
1

6πGρ
. (2.24)

A Universe that has an energy content dominated by vacuum-energy or a cosmological constant
has

a ∝ exp [Ht] ⇒ H =

√
8πGρ

3
= const. (2.25)

So we see that vacuum repulsion would cause the Universe to expand infinitely. The general
case will not be analytically tractable but numerical solutions do a good job as well.

2.3 The Nature of Redshift

The FRW Universe has no energy conservation but if Uµ = (1, 0, 0, 0) is the velocity of
comoving observers we can write down a conserved Killing tensor. Therefore we obtain for a
particle with velocity V µ

Kµν = a2(gµν + UµUν)⇒ a2
[
VµV

µ + (UµV
µ)2
]

= const. = K. (2.26)

For photons VµV µ = 0 and hence

UµV
µ =

K

a
. (2.27)

This is proportional to the frequency measured by an observer given by ν = −UµV µ. Hence
the frequency between emission and absorption of a light ray changes by

νobs
νem

=
aem
aobs

. (2.28)

The redshift between two events is defined by the fractional change in wavelength

z =
λobs − λem

λem
=
aem
aobs
− 1. (2.29)

This redshift is different from Doppler effect as it is due to the expansion of space.

2.4 Age of the Universe

As sometimes it is more intuitive to think about times rather than redshifts we calculate the
t(z) relationship for a flat ΛCDM Universe with matter density Ωm = 0.25 and dark energy
density ΩΛ = 0.75.

t(z) =

∫ t(z)

0

dt ′ =

∫ a(z)

0

da′

ȧ′
, (2.30)
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=

∫ a(z)

0

da′

Ha′
=

1

H0

∫ ∞
z

dz ′

(1 + z)
√

Ωm(1 + z ′)3 + ΩΛ

(2.31)

In Figure 2.1 we show t0 − t(z) where t0 = 14.15× 109 a is the present age of the Universe.
Another useful quantity is the relation between comoving distance and redshift which follows
from the integration of a radial photon lightpath, the geodesic distance:

χ(z) =

∫ t0

t

dt

a
=

1

H0

∫ 1

z

dz ′√
Ωm(1 + z ′)3 + ΩΛ

. (2.32)

For the Einstein-de-Sitter case we find the analytic expression

χ(z) =
2

H0Ωm

[
1−

1√
1 + z

]
. (2.33)
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Figure 2.1: Left panel: Time from redshift z to present for a ΛCDM Universe Right panel: Comoving
radial distance to an object at redshift z.

2.5 Luminosity Measures

There is a wide range of luminosities in our Universe and therefore astronomers like to quantify
them on a logarithmic scale called the absolute magnitude. For an object of luminosity L,
the absolute bolometric luminosity is given by

Mbol = −2.5 log

(
L

L�

)
+ C�, (2.34)

where L� is the solar luminosity and the numerical summand C� is the solar magnitude. The
brighter a star or galaxy, the smaller is its absolute magnitude. In most cases only luminosities
in a certain spectral range, defined by a filter, will be used. Equivalently flux φ can be measured
by the apparent magnitude on a logarithmic scale

m = −2.5 lg (φ) + αC. (2.35)

The constant αC is chosen in a way, such that in absence of absorption absolute magnitude
equals apparent magnitude for a source in distance d = 10 pc

m = M + 5 lg

(
d

10 pc

)
+ αC. (2.36)
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2.6 Cosmological Distances

There are three different distance measures, which are frequently used in cosmology. First
it is important to distinguish between physical distances rphys, which are at least principally
measurable with a ruler, and comoving distances xcom, which give a notion of the distance in
a nonexpanding Universe

rphys = axcom. (2.37)

Let us consider a photon travelling in radial direction. We can use the metric (2.9) to see that
the comoving distance traveled in time interval dt is dχ = dt/a. By integrating this radial null
geodesic ds2 = 0 we obtain the geodesic distance

χ(z) =

∫
dz ′

H(z ′)
. (2.38)

Often the angle subtended by an object on the sky is measured to estimate its physical size.
The angular diameter distance is constructed to give an expression equivalent to the well
known flat space equation

θ =
q

DA
. (2.39)

Here q is the physical dimension of the object. From the metric we see that for two points
separated by an angle dΩ we have dt = aSk(χ)dΩ. The physical dimension of a small object
would be dl = dt, since we use units in which c = 1. Equating dΩ = dθ we see

DA =
Sk(χ)

1 + z
. (2.40)

If we consider an object with luminosity L, the equivalent of the flat space expression for the
flux through a sphere with radius DL would be

F =
L

4πD2
L
. (2.41)

The area of the sphere in the denominator would be 4πSk(χ)2 and hence one could think of
DL = Sk(χ). This is however not true, since the photon energies are redshifted by an factor
1/(1 + z) and the space expands during the travel time from the source to the sphere by
another factor of 1/(1 + z). Hence the flux is (1 + z)2 times smaller than expected from the
trivial case and we finally obtain the luminosity distance

DL = (1 + z)Sk(x) = (1 + z)2DA(χ). (2.42)

2.7 Cosmological Parameters

Throughout this thesis we use the cosmological parameters which that used for the simula-
tions our investigations rely on. The cosmological parameters for the simulations are inspired
by the best fit values released by the WMAP team observing the cosmic microwave background
[Spergel et al. , 2003, Spergel et al. , 2007] and can be taken from Table 2.1.

Ωb Ωdm ΩΛ h σ8 n w

0.04 0.21 0.75 0.7 0.8 1 −1

Table 2.1: Cosmological parameters adopted throughout this thesis. Baryon density parameter,
dark matter density parameter, dark energy density parameter, dimensionless Hubble parameter
H0 = 100h km s−1 Mpc−1, power spectrum normalisation, primordial power spectrum slope, dark
energy equation of state p = ωρ.

Tighter constraints of cosmological parameters can be obtained from a combination of obser-
vations, as is for instance done by [Seljak et al. , 2006] for a combination of WMAP 3 year
data, Ly-α forest power spectrum, supernovae and galaxy clustering spectra.
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2.8 Dark Matter

One of the main assumptions underlying this thesis is that there exists a non-luminous kind of
matter, whose mass however strongly affects the gravitational evolution of the Universe. The
study of galaxy dynamics revealed already in in the 1930s that there is a difference between
the observed luminous matter content and the mass needed to explain the galaxy dynamics
[Raffelt & Murdin, 2002]. Further evidence comes from large scale flows and the flat rotation
curves of galaxies. Most importantly the luminous matter present in the Universe can in no way
account fro the total matter content of our flat spacetime. While there have been attempts
to circumvent this missing mass problem by introducing modifications of general relativity, the
most popular explanation is that there is a non-visible or weakly interacting kind of matter.
Basicly one distinguishes baryonic and non-baryonic dark matter candidates. Often the dark
matter is further classified in the categories Hot Dark Matter (HDM) for candidates that
were relativistic at decoupling and Cold Dark Matter (CDM) for non-relativistic species. Hot
Dark Matter suffers from free-streaming and is strongly disfavoured by structure formation,
since it would damp the density contrast too much.
We will now in brevity discuss the most viable dark matter candidates:

axions The smallest mass non-baryonic cold dark matter candidate mA ≈ 1 × 10−5 GeV is
a postulate from quantum chromodynamics. Axions would arise from a non-thermal
process in the early Universe, producing a Bose condensate. They possess small elec-
tromagnetic interactions and could thus drive microwave cavities, which is the most
promising approach to detect them.

WIMPs Weakly Interacting Massive Particles (WIMPs) are a standard cold dark matter can-
didate with mWIMP > 10 GeV. Their existence is predicted from a supersymmetric
extension of the standard model of particle physics. In this theory the role of the WIMP
can be played by the neutralino, the lightest supersymmetric particle. The experimental
search for WIMPs mainly focuses on the detection of energy depositions through the rare
collisions of a WIMP with a nucleus. These experiments assume that a WIMP aether
permeates the whole Milky Way. The DAMA experiment has reported a fluctuation of
the WIMP flux during the earth’s orbit around the sun [Bernabei et al. , 2003]. This
result was so far not confirmed by other experiments and is thus heavily discussed.

neutrinos The neutrino is the only yet detected candidate for non-baryonic dark matter. Neu-
trino oscillation experiments have shown evidence for non-zero neutrino masses and an
upper bound of

∑
mν < 0.17 eV [Seljak et al. , 2006] is set from cosmology. Due to the

upper bounds on the neutrino mass they fall into the regime of hot dark matter, which
leads to some tension with structure formation. Consequently neutrinos can not account
for all the required dark matter.

MACHOs Massive Astrophysical Halo Objects (MACHOs) are a baryonic dark matter candi-
date. They consist of ordinary matter in a non-luminous form, e. g. failed stars, stellar
remnants or black holes. The search for MACHOs involves microlensing, the temporary
increase of the apparent brightness of stars due to the gravitational light deflection by
MACHOs passing close to the line of sight. There has been positive detection of a few
objects, yielding mMACHO ≈ 0.5 M�. While the opinions about the interpretation of
these detections are still divided, it is clear that the MACHOs can in no way account for
all the dark matter in the Milky Way.



CHAPTER 3

Linear Growth of Structures

In this chapter we will describe how the nonlinear structures observed today could develop from
the very homogeneous and isotropic initial conditions, present at the time of recombination. We
will see that this homogeneity is not perfect. There were small inhomogeneities, created during
inflation as zero point fluctuations of the inflaton field and then stretched to become classical
during the rapid expansion in inflation. The quantum mechanical origin of the fluctuations
leads to the cosmological random field, whose evolution will be treated in this chapter.
Structure formation can be treated with Newtonian dynamics on scales small compared to
the Hubble scale1 but on larger scales, especially during inflation, a fully relativistic treatment
of the perturbations has to be performed. We will start with some comments on Eulerian
and Lagrangian dynamics of the nonrelativistic cosmological fluid, before we turn towards a
brief introduction to inflation. Finally, we will develop the formalism of relativistic perturbation
theory and apply it to the derivation of the primordial matter power spectrum. To conclude,
we comment on the evolution of the latter using transfer functions.

3.1 Newtonian Theory of Structure Formation

We consider our Universe as being composed of an ideal fluid characterised by an equation of
state, which in most cases can be written as p = wρ. The standard Newtonian equations for
a homogeneous fluid are known as the continuity and Euler equations

∂ρ

∂t
+ ∇(ρu) = 0 (3.1)

Du

Dt
=
du

dt
+
dx

dt
· ∇u = −

1

ρ
∇p −∇Φ, (3.2)

where we defined the convective derivative D/Dt. These equations are supplemented by the
Poisson equation, which relates the density to the gravitational potential

∆Φ = 4πGρ. (3.3)

In a smooth, expanding Universe we have fixed comoving or Lagrangian positions x and time
dependent physical coordinates r related by

r(t,x) = a(t)x. (3.4)

1The Hubble scale describes over which distances events can be causally connected.
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The particle movement in the smooth case is described by the so called Hubble flow, the linear
dependence of the recessional velocity on physical distance

ṙ(t,x) = ȧ(t)x = Hr. (3.5)

As we know that our Universe is far from being homogeneous on small scales, we will introduce
perturbations on the smooth background Universe by [Mukhanov, 2005]

ρ(x, t) = ρ̄(t) + δρ(t,x), (3.6)

p(x, t) = p̄(t) + δp(t,x), (3.7)

Φ(x, t) = Φb(t) + δΦ(t,x). (3.8)

We will generally assume adiabatic initial conditions, i.e. the fluctuations in the photon density
follow the fluctuations in the matter density. In this context it is convenient to introduce a
dimensionless overdensity

δ :=
ρ(x)

ρ̄
− 1. (3.9)

By perturbing the homogeneous fluid, initially static comoving positions now become time
dependent.

r(t,x) = a(t)x(t) (3.10)

The time dependent comoving position leads to an additional term in the physical velocity

ṙ(t,x) = u(t,x) = Hr + aẋ = Hr + v. (3.11)

In the last line we split the particle velocity in one part following Hubble flow and the peculiar
velocity v, which a uniform expansion observer would now measure for the comoving observer.
The Newtonian restframe is defined as the frame where the spatial average over v vanishes.
Today this restframe is determined by the matter content rather than the radiation. The
acceleration of the comoving observer reads as

du

dt
= äx + g. (3.12)

Here g refers to the peculiar acceleration, which is given by

g =
dv

dt
+Hv =

1

a

d(av)

dt
(3.13)

The Euler equation relates the acceleration to pressure and gravitational potential

du

dt
= −

1

ρ
∇p −∇Φ (3.14)

It is convenient to express all spatial derivatives w.r.t. the comoving position x and to subtract
out the fluid equations valid for the homogeneous background. To do this we have to consider
the following relation when rewriting partial derivatives

∂f (r = ax, t)

∂t

∣∣∣∣
x

=
∂f (r = ax, t)

∂t

∣∣∣∣
r

+ ȧx ·∇rf . (3.15)

Furthermore, we can use conformal time defined by adτ = dt. This yields mass conservation,
Euler and Poisson equation for the perturbed Universe2

∂δ

∂τ
+ ∇ ·

[
v(1 + δ)

]
= 0, (3.16)

2In this chapter we will use the prime to denote derivatives w.r.t. conformal time and conformal Hubble
parameter defined as

H =
1

a

da

dτ
=
da

dt
= aH.
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∂v

∂τ
+Hv + v (∇ · v) = −c2

s ∇δ −∇δΦ, (3.17)

∆δΦ = 4πρ̄a2δ. (3.18)

Here we neglected entropy perturbations and used δp = c2
s δρ. To proceed, we linearise above

equations, noting that the linearised equations will only be valid as long as the density pertur-
bations are well into the linear regime. Expansions to higher order are necessary to follow the
perturbations into the non-linear regime.
Neglecting pressure on scales larger than the Jeans scale3, we can derive the following equa-
tion:

δ′′ +Hδ′ − 4πGa2ρ̄δ = 0 (3.19)

Here primes denote differentiation w.r.t. conformal time and the Laplacian is w.r.t. comoving
coordinates. This is a linear differential equation of second order and has a growing and a
decaying solution, such that the general solution can be written as a linear combination of
both

δ(τ) = c1D1(τ) + c2D2(τ), (3.20)

with D1 and D2 given by

D1(τ) =
5

2
ΩmH(τ)

∫ a(τ)

0

dã

(ãH)3
D2(τ) = H(τ). (3.21)

A common assumption is that the perturbations observed today are influenced by the growing
mode only. Perturbations were extremely small after recombination and hence the decaying
mode has vanished. Often one refers to D1(τ) as the linear growth factor.
In a flat, purely matter dominated Universe (Ωm = 1), usually termed Einstein-de-Sitter
Universe, we have a ∝ t2/3 ∝ τ2 and hence

D1 = τ2 ∝ t2/3, D2 = τ−3 ∝ t−1. (3.22)

Peculiar Velocities

We can write down the linearised continuity equation (3.16) in Fourier space

δ̃′ + ik · ṽ = 0. (3.23)

In linear theory vorticity decays as 1/a. As long as there is no process which generates vorticity
the peculiar velocity can be written as the gradient of a potential, leading to v ‖ k. At late
times the matter density contrast scales with the growing mode D1(τ) and hence

|v| =
i

k

d

dτ

(
δ̃

D1
D1

)
=

i δ̃

kD1

dD1

dτ
=
i δ̃H
k

d lnD1

d ln a
=
i δ̃Hf
k

. (3.24)

In the last equality we introduced the logarithmic growth factor f ≈ Ω
6/11
m and in a flat

Universe with cosmological constant Ωm scales as

Ωm(z) =

(
1 +

1−Ωm,0

Ωm,0

1

(1 + z)3

)−1

(3.25)

where Ωm,0 is the matter density at z = 0.

3The Jeans scale basically separates small scales dominated by pressure forces from large scales dominated by
gravity.
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3.2 Lagrangian Description of Structure Formation -
Zeldovich Approximation

In Lagrangian dynamics one considers the change of particle position with time rather than
continuum quantities such as pressure or density at a fixed location. Hence we have to solve
the particle equation of motion in comoving coordinates

x′′ +Hx′ = −∇xδΦ. (3.26)

As the perturbations were small at recombination, it is valid to assume that only the growing
mode solution of (3.19) is present today

δ(x, τ) = D1(τ)δ0(x). (3.27)

Substituting this into Poisson equation implies that gravitational potential scales as

δΦ =
D

a
δΦ0, (3.28)

which can be used to integrate (3.26) twice in time.

x′ = −
1

a

∫ τ

0

dτ̃D(τ̃)∇δΦ0, (3.29)

x = x0 −
∫ τ

0

dτ̃

a(τ̃)

∫ τ̃

0

D(˜̃τ)d ˜̃τ∇δΦ0. (3.30)

The growth factor satisfies the linear growth equation (3.19) and hence we have

D =
(aD′)′

4πGρ̄a3
. (3.31)

Note that the denominator is constant and the integration of (3.29) and (3.30) is readily done
by evaluation of above expression at the boundaries

x = x0 −
∇δΦ

4πGρ̄a2
, v = −

1

4πGρ̄a2

aD′

D
∇δΦ. (3.32)

In the derivation of above result we used the validity of the linear growth equation. This
assumption is no longer valid when the overdensities enter the non-linear regime. Zeldovich
proposed in 1970 that above result should be applicable also in the weakly non-linear regime, an
assumption which was christened the Zeldovich approximation. When the particle trajectories
in Eulerian space cross, i.e. when particles with different Lagrangian positions get mapped to
the same position in real space, the Lagrangian description breaks down.
Using Zeldovich approximation and conservation of mass one can infer to the first structures
that will form in the Universe. It turns out that the first structures are sheetlike.
The Zeldovich approximation is often written in the form

x(a, q) = q + L(q, a). (3.33)

Here q denotes the initial Lagrangian position of a particle and L is the displacement, whose
functional form we derived above.
Once calculated the density field at the starting time of a simulation, one needs to set up
particle positions and velocities. One approach to generate the initial conditions for large
N-body dissipationless simulations is to put the Np particles on a Cartesian grid with grid
spacing ∆x = (V/Np)1/3, where V is the volume, and displace them according to Zeldovich
approximation [Bertschinger, 1998].



Chapter 3. Linear Growth of Structures | 19

3.3 Inflation in a Nutshell

Inflation was proposed by [Guth, 1981] to account for the large scale homogeneity and horizon
problem present in the big bang paradigm. He argued that shortly after big bang the Universe
must undergo an epoch of accelerated expansion ä > 0 which should be over at t ≈ 10−34 s.
During this expansion the comoving Hubble length 1/H decreases with time while the metric
approaches that of a flat isotropic Robertson-Walker Universe. From the first Friedmann
equation (2.15) one immediately sees that the field driving inflation needs to come along with
negative pressure.
The easyest model of inflation is based on a Universe dominated by a single scalar field φ, the
inflaton field. From the Lagrangian of the inflaton field one can derive pressure and density

pφ =
1

2
φ̇− V (φ), ρφ =

1

2
φ̇+ V (φ), (3.34)

where V is the potential of the scalar field. The equation of motion is the Klein-Gordon
equation, that in an expanding Universe has an additional friction term

φ̈+ 3Hφ̇+ V,φ(φ) = 0, (3.35)

inflation stretches all lengths exponentially ln (af/ai) ≈ 75, where ai and af are the expansion
factors at begin and end of inflation, respectively. When a mode with comoving wavelength
1/k becomes comparable to the comoving Hubble length 1/H, it will cross the horizon4 and
will remain unchanged until it reenters the horizon after the end of inflation.
One of the easyest inflationary models, slow roll inflation, states that the scalar field ap-
proaches the minimum of its potential by slowly rolling down the potential. The first slow roll
parameter describes the deviations from the de Sitter case wφ = pφ/ρφ = −1

ε =
3

2
(1 + wφ) = 4πG

(
V,φ
V

)2

. (3.36)

The slowly rolling field has to satisfy φ̇� 1, which is described by the second slow roll parameter

η =
d2φ

dt2
=

φ′′

Hφ′ − 1 = 8πG
V,φφ
V
. (3.37)

Successfull inflation requires ε� 1 and η � 1. At the end of inflation the scalar field starts to
oscillate and by doing so, it loses its energy and creates particles. To lowest order in the slow
roll parameters we have

ε =
3φ̇2

2a2V
, φ̇ = −

a2Vφ
3H . (3.38)

3.4 Cosmological Perturbation Theory

In the above discussion we assumed that after recombination small density fluctuations were
present in all components but did not say much about their creation. Besides the Gaussian
fluctuations generated by Inflation, there are also non-Gaussian fluctuations, predicted for
instance by topological defects. We will neglect the latter and assume that inflation is the valid
physical model to describe the early phase of the Universe.
In order to calculate the spectrum of the density fluctuations we have to use a fully relativistic
approach, where deviations from homogeneity are described by small perturbations around the
flat Robertson-Walker background metric ηµν

gµν = ηµν + hµν . (3.39)

4The horizon scale determines over which distances physical processes can be in causal contact at a given
cosmological time and is usually of order H−1.
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Following the notation of [Liddle & Lyth, 2000, Seljak, 2000b] we can write down the per-
turbed metric as

ds2 = a2(τ)
[
− (1 + 2A) dτ2 − 2Bidx

idτ + ((1 + 2D)δi j + 2Ei j) dx
idx j

]
. (3.40)

Here we decomposed the metric perturbations into time, space and mixed time space compo-
nent, where Ei j is the traceless part of the spatial perturbation and D is its trace. We will in
the following only consider the scalar part of a scalar-vector-tensor decomposition of the per-
turbations [Seljak, 2000b], and denote the scalar parts of the above introduced perturbations
as A,B,D and E. To write down the Einstein equations, we have to consider the following
energy momentum tensor (EMT)

T µν = (ρ+ p)uµuν + pgµν + Σµν , (3.41)

where Σµν is the anisotropic stress. There is no longer a preferred coordinate system if we
go over to a perturbed Universe. We did not yet specify a specific gauge for the coordinates
used in (3.40) but have rather chosen an arbitrary coordinate system applicable throughout
the whole space-time.
We can furthermore define density and pressure perturbation as

ρ(τ, xi) = ρ̄(τ) + δρ(τ, xi), p(τ, xi) = p̄(τ) + δp(τ, xi). (3.42)

Gauge transformations can be described as first order changes ξµ in the coordinates

x̃µ = xµ + ξµ, (3.43)

which can be split up into time and space part

x̃0 = x0 + T (xµ), x̃ i = x i + Li(xµ). (3.44)

The line element has to be conserved under this transformation and hence we can write down
the transformation law of a general tensor under this change of coordinates

Q̃µν(x̃γ) =
∂xα

∂x̃µ
∂xβ

∂x̃ν
Qαβ(x̃γ − ξγ). (3.45)

This leads to

δρ̃ = δρ− ρ′T, (3.46)

δp̃ = δp − p′T, (3.47)

ṽ = v + L′. (3.48)

The scalar field which will be the driving force of inflation transforms as

δφ̃ = δφ− φ′T. (3.49)

3.5 Popular Gauge Choices

To proceed in our goal of deriving the spectrum of fluctuations from inflation we have to use
a convenient gauge. The discussion presented here is based on [Seljak, 2000b] and is not
thought as a formal derivation but rather as a rough guideline.

Newtonian Gauge

This gauge is defined by B̃ = Ẽ = 0. We rename the remaining two scalar perturbations
A → Ψ and D → −Φ. There is no remaining gauge ambiguity, i.e. the gauge is completely
fixed by the transformation

L = −
E

k
, T = −

B

k
+
E′

k2
, (3.50)
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where B and E are evaluated in an arbitrary gauge. Some important equations following from
the Einstein field equations are

(−k2 + 3K)Φ = 4πGa2
[

3H(ρ̄+ p̄)
v

k
+ δρ

]
, (3.51)

Φ′ +HΦ = 4πGa2 (ρ̄+ p̄)
v

k
, (3.52)

k2(Φ−Ψ) = 8πGa2Σ. (3.53)

On small scales we can neglect the curvature K on the lhs as well as the first term on the rhs
of the first equation to obtain a Poisson equation for the expanding Universe

− k2Φ = 4πGa2δρ. (3.54)

The metric then reduces to the form

ds2 = a2
{
−(1 + 2Ψ)dτ2 + (1− 2Φ)dxidxj

}
(3.55)

In the absence of anisotropic stress we furthermore have Φ = Ψ.

Comoving Gauge

This gauge is very useful in the calculation of the primordial perturbations and is defined such
that the momentum density T 0

i vanishes. We have one further gauge freedom, which we use
to set Ẽ = 0 and get the following transformation

L = −
E

k
, T =

v − B
k

. (3.56)

The two remaining scalar perturbations are renamed as A→ ξ and D → R, where R is known
as the curvature perturbation. We quote only two Einstein and one conservation equation
for later use

(k − 3K)(R+Hvcom/k) = 4πGa2δρcom, (3.57)

Hξ −R′ =
K

k
v, (3.58)

(ρ̄+ p̄)ξ = −δp +
2

3

(
1− 3

K

k2

)
Σ. (3.59)

Spatially Flat Gauge

This gauge will prove to be very convenient to calculate scalar field perturbations which vanish
in comoving gauge. The gauge is fixed by Ẽ = 0 and D̃ = 0. The scalar field equation
simplifies if we neglect all terms proportional to the slow roll parameters

δφ′′ + 2Hδφ′ + k2δφ = 0. (3.60)

3.6 Perturbations from Inflation

We already noted that the concept of inflation can account both for the horizon and the
flatness problem. Another important advantage of having inflation in the early Universe is that
it can produce the seeds for structure formation in the Universe. These fluctuations arise as
zero point fluctuations of a scalar field and are then stretched by the exponential expansion
to become classical at horizon crossing. As a first step we will consider the relation between
Newtonian potential Φ and curvature perturbation R

δρcom = δρN − ρ′NTN→com = δρN + 3H(ρ̄+ p̄)
vN
k
, (3.61)
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where we used continuity equation ρ̄′ = −3H(ρ̄+ p̄).
Using (3.51) and furthermore neglecting curvature K leads to

− k2Φ = 4πGa2δρcom. (3.62)

With the Poisson equation in comoving gauge (3.57) we can derive

R+H
vcom
k

= Φ. (3.63)

In Newtonian gauge E = 0 and hence LN→com = 0. This implies vcom = vN + L′N→com = vN.

R = Φ−
2

3

H−1Φ + Ψ

1 + ω
(3.64)

Here we used (3.51) and the Friedmann equation for the smooth background

H =
8πGa2

3
ρ̄. (3.65)

If we furthermore neglect anisotropic stress Σ = 0 for a Universe dominated by ideal fluids, we
obtain Φ = Ψ and hence

Φ =
3 + 3ω

5 + 3ω
R. (3.66)

We can now use above results to show that curvature perturbation is constant outside horizon.
To do so, we rewrite the evolution and conservation equations for the curvature perturbation
(3.57) and (3.58) to yield

R′ = Hξ = −
Hδpcom
ρ̄+ p̄

(3.67)

We will now show that this quantity is very small outside horizon, i.e. for k/H → 0. Assuming
vanishing entropy perturbation, we have δpcom = c2

s δρcom and equation (3.62) as well as (3.67)
lead to

R′ =
c2
s k

2HΦ

4πGa2(ρ̄+ p̄)
=

[
k

H

]2
2Hc2

sR
5 + 3ω

. (3.68)

So we in fact see, that R′ vanishes outside horizon and hence R = const.
We now want to calculate the spectrum of the metric perturbation that are produced by the
scalar field driving inflation. To calculate these zero point fluctuations we have to transform to
spatially flat gauge, since the scalar field fluctuation vanishes in comoving gauge. This implies
for any transformation to comoving gauge

0 = δ̃φcom = δφ− Tflat→comφ
′
flat ⇒ Tflat→com =

δφ

φ′
. (3.69)

The sense of using the spatially flat gauge becomes obvious when writing down the equation
which relates the curvature perturbation to the scalar field

R = D −
k

3
L−HT = D +

E

3
−HTflat→com = −H

δφ

φ′
. (3.70)

Now that we know how to calculate the curvature perturbation from the scalar field we can
derive the actual fluctuations. As already noted, the evolution equation for the scalar field
simplifies if we assume slow roll inflation and neglect all terms proportional to the slow roll
parameters

δφ′′ + 2Hδφ′′ + k2δφ = 0. (3.71)

Introducing y = aδφ we can simplify this to obtain

y ′′ +
(
k2 − 2H2

)
y = 0. (3.72)
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On small scales the term proportional to k2 will dominate and we obtain an harmonic oscillator
equation, which can be quantised using creation â† and annihilation operators â with the usual
bosonic commutation relations. A general state is descried by a superposition of both operators

ŷ = λ(k)â + λ†(k)â†. (3.73)

We can now calculate the variance of the ground state for the harmonic oscillator by calculating
the expectation values in the vacuum〈

ŷ ŷ †
〉
− 〈ŷ〉2 =

〈
0|ŷ ŷ †|0

〉
= |λk |2 . (3.74)

The classical solution to equation (3.73) is given by

λ(k) =
1√
2k

(
1−

iH
k

)
exp

[
−i
k

H

]
, (3.75)

which has small k/H →∞ and large scale k/H → 0 limits

|λk | =
1√
2k
, |λk | =

H√
2k3

. (3.76)

Since we are interested in the classical solution after horizon crossing, we can use the large
scale limit and (3.70) to obtain

R =
−iH2

√
2k3aφ′

. (3.77)

From this quantity we can derive the variance or power spectrum5 of the curvature fluctuation

∆2
R(k) =

k3 |R|2

2π2
=
G

πε

(
H
a

)2

, (3.78)

where we used 4πGφ′2 = εH2. Since the Hubble parameter H = H/a is approximately con-
stant during inflation the variance is almost scale invariant. Furthermore we derived above that
the curvature perturbation is frozen outside the horizon. The reason for this scale indepen-
dence is that the perturbations cross horizon very fast and no physical processes can imprint
their scale.
Relating the logarithmic derivative of ∆2

R at horizon crossing k/H = 1 to the slow roll param-
eters we can derive the slope

d ln ∆2
R

d ln k

∣∣∣∣
k=H

= n − 1 = −4ε− 2η. (3.79)

This guides us to make an power law ansatz for the power spectrum

∆2
R ∝ kn−1. (3.80)

The value n = 1 is predicted by slow roll inlfation ε � 1, η � 1 and corresponds to the
Harrison-Zeldovich or scale free spectrum. To calculate the actual density perturbation in
Newtonian gauge during matter domination w = 0 we simply use Poisson equation −k2Φ =

4πGa2ρ̄δk = 3
2H

2δk

δk = −
2

3

(
k

aH

)2

Φk =
2

5

[
k

H

]2

R. (3.81)

Hence the power spectrum of the density fluctuations is given by

∆2
δ =

4

25

[
k

H

]4

∆2
R ⇒ P (k) ∝ k. (3.82)

5There are two definitions of the power spectrum in the literature. We will mainly use the definition P (k) =˙
|δ(k)|2

¸
, which is related to the definition used here as P (k) = 2π2∆2(k)/k3
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3.7 Evolution of the Primordial Spectrum

In the last section we developed an understanding of the shape of the perturbations at the
moment when a mode crosses the horizon. We saw that the modes outside horizon do not grow
both in matter and in radiation domination. But modes entering during radiation domination
will grow as δ ∝ ln τ , whereas during matter domination the growth scales as δ ∝ τ2. So the
amplitude of small scale (high k) modes entering during radiation domination will be suppressed
compared to the modes entering only after matter radiation equality. A convenient way to
express how the amplitude of a certain mode changes by the cosmological evolution is the
transfer function

T (k, τ) =
δ(k, τ)

δ(k, τe)
. (3.83)

Here we used τe to denote the time of horizon entry, given by τe ∝ k−1. The processed power
spectrum then is given by

P (k, τ) = T 2(k, τ)P (k, τe). (3.84)

The transfer function will be close to unity on large scales and suppressed for small scales. We
show the transfer function calculated for the cosmology under consideration in our simulations
in Figure 3.1.
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Figure 3.1: The transfer function as computed with CMBFAST for the cosmology under consideration
in our work. We clearly see the baryon acoustic oscillations imprinted by the strongly coupled baryon
photon fluid.

The reason for the different growth rates is that the species present in the Universe are not
evolving independently after horizon crossing and have to be described by the Boltzmann equa-
tions, a coupled set of differential equations describing the densities and distribution functions
of the relativistic and nonrelativistic species. There are fitting functions for T (k) in the litera-
ture but we decide to use CMBFAST [Seljak & Zaldarriaga, 1996] to find a numerical solution.
We will compare measured power spectra to the matter power spectrum predicted by slow roll
inflation

Pi(k) = Akn (3.85)
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Using the transfer function we calculate the normalisation A of the power spectrum by de-
manding for the right root mean square overdensity within spheres of R = 8h−1Mpc

σ2
R =

4πV

(2π)3

∫
dkAk3T 2(k)

∣∣ŴR(k)
∣∣2 . (3.86)

Here ŴR(k) is the Fourier transform of the top hat window function. For the simulation we
used σ8 = 0.8 and obtain a normalisation of A = 5.05× 106/V .
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CHAPTER 4

Statistics

The Universe we live in was seeded by quantum fluctuations, which became classical during in-
flation and grew by the subsequent evolution to form the highly nonlinear structures we observe
today. As a consequence of this quantum mechanical origin, the structures are stochastic with
random initial conditions. Due to this fact we can not hope to develop a theory that exactly
reproduces the Universe we observe today. Rather, we should consider our Universe as one
representation of an ensemble of possible Universes. Therefore, we need to introduce statistical
quantities, which can be used to compare theoretical predictions with the observed data.

4.1 Correlation Functions

Starting from a smooth matter density field ρ(r) we can define a dimensionless overdensity
or density contrast

δ(r) =
ρ(r)− ρ̄

ρ̄
, (4.1)

which satisfies 〈δ(r)〉 = 0 and should be homogeneous and isotropic in a statistical sense.
Here statistical homogeneity means that all multipoint moments remain invariant under coor-
dinate translations, whereas statistical isotropy states that the latter will be true for coordinate
rotations. The brackets stand for an averaging process, which can be understood either as
an ensemble average over many possible realisations of the Universe or as a spatial average
considering all x of the Universe. That these two averages are equivalent is not trivial. But
we can assume that points that are far away from each other in the Universe are not causally
connected and therefore we can use averages over widely separated regions as an approximation
for independent realisations [Peacock, 1999].1

It will prove convenient to build up the actual density field from a superposition of modes that
describe the behaviour on a certain scale. We therefore consider a finite box of volume V with
periodic boundary conditions.
We introduce the following Fourier convention:

δ̂(k) =
1

V

∫
d3r exp [ik · r]δ(r), (4.2)

δ(r) =
V

(2π)3

∫
d3k exp [−ik · r]δ̂(k). (4.3)

1Fields which satisfy the property that volume average is equivalent to ensemble average are termed ergodic
in statistical physics.
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One of the most important clustering statistics is the two-point autocorrelation function,
defined as

ξ(r) = 〈δ(x)δ(x + r)〉 . (4.4)

Due to statistical isotropy the two point correlation only depends on the magnitude of the
separation ξ(r) = ξ(|r|). Noting that δ(r) is a real quantity and using (4.3) in above equation
one can easily derive

ξ(r) =
V

(2π)3

∫
d3k

∣∣δ̂(k)
∣∣2 exp [−ik · r]. (4.5)

Here we used the Hermitian property of Fourier transforms of real fields δ̂(−k) = δ̂†(k). We
see that the correlation function is just the Fourier transform of the power spectrum defined
as

〈δ(k)δ(k′)〉 = δD(k − k′)P (k), (4.6)

where δD(k) is the Dirac-Delta distribution. The power spectrum is in turn related to the
correlation function by

P (k) =
1

V

∫
d3rξ(r) exp [ik · r] =

4π

V

∫
drξ(r)r2j0(kr), (4.7)

where j0(kr) = sin(kr)/kr refers to the spherical Bessel function of order 0.

4.2 Filtering of the Density Field

As we are not only interested in the local properties of perturbations, but also in averages
over a certain volume, we can convolve the density field with a filter W (R) of scale R. This
convolution in real space translates into a simple multiplication in Fourier space.
The variance of the smoothed density field is given by

σ2
R =

V

(2π)3

∫
d3kP (k)

∣∣ŴR(k)
∣∣2 =

〈
δR(x)2

〉
. (4.8)

Often one considers the Fourier transform of the top hat filter with radius R

ŴR(k) = 3

[
sin (kR)

(kR)3
−

cos (kR)

(kR)2

]
. (4.9)

This function gives notable contributions only for |k | ≤ 4.5
R . Note that the scale of the filter is

related to a typical mass by the relation

M =
4π

3
R3ρ̄. (4.10)

The quantity σ8 is the root mean square (rms) density fluctuation in spheres of radius 8 h−1Mpc
and is often used to normalise the power spectrum. Figure 4.1 shows the rms overdensity in
spheres of radius R and mass M for the cosmology under consideration.

4.3 Two-Point Probability Distribution

An alternative interpretation of the correlation function defined above can be found in terms
of the multi-point probability distribution functions [Peebles, 1980]. We will consider the back-
ground density field to be traced by a certain species with number density n̄ and consider small
volumes δV , which either host or don’t host one tracer particle. If we had a purely random field
the probability of finding particles both in volumes δV1 and δV2 separated by r12 = |x1 − x2|
would be given by the product of the independent probabilities

δP = n̄2δV1δV2. (4.11)
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Figure 4.1: The rms density fluctuations in spheres containing mass M at z = 0 calculated for the
cosmology under consideration in our simulation with CMBFAST [Seljak & Zaldarriaga, 1996]. Dashed
line shows the collapse threshold δc = 1.686 from spherical top hat collapse.

For a correlated sample the probabilities will no longer be independent and the correlation
function can now be defined as the excess over random probability of finding two particles
separated by r12

δP (r12) = n̄2 [1 + ξ(r12)] δV1δV2. (4.12)

Since the probability of having a particle in δV1 is given by n̄δV1, we can write the conditional
probability to find a particle in δV2 given there is one in δV1

δP (2|1) = n̄ [1 + ξ(r12)] δV2. (4.13)

So we see that for correlated samples (ξ(r12) > 0) the probability of finding a second particle
is enhanced over random, whereas it is suppressed over random for the anticorrelated case
(ξ(r12) < 0).
Similarly, we can define a quantity which describes how much two different tracers of the cos-
mological density field are correlated. The cross-correlation function between two populations
A and B is defined by

δP (r) = n̄An̄B [1 + ξAB(r)] δV1δV2, (4.14)

which can be calculated from the density fields as

ξAB(r) = 〈δA(x)δB(x + r)〉 . (4.15)

4.4 Bias and Cross-Correlation Coefficient

The bias describes the excess clustering of population A with respect to population B and can
be defined from cross-correlations and auto-correlations

bAB =

√
ξBB
ξAA

, bAB =
ξAB
ξAA

. (4.16)

This linear relationship between the underlying field and the tracer population will only be
applicable in the linear regime and one should note that scale dependence of bias is intensively
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discussed in the literature [Smith et al. , 2007].
The cross-correlation coefficient between populations A and B is defined by2

rAB =
ξAB√
ξAAξBB

(4.17)

and describes the stochasticity between two density fields [Bonoli & Pen, 2008]. It was shown
in N-body simulations that this quantity is close to one over a wide range of scales. Similar
quantities can be defined for other clustering statistics such as projected correlation functions
and power spectrum. The cross-correlation coefficient allways satisfies −1 ≤ r ≤ 1. The profit
of r is that if it were really constant r = 1 over all scales there was no stochasticity and one
could calculate the unobservable dark matter correlation from observable galaxy-matter and
galaxy-galaxy correlations by simply inverting Equation (4.17)

ξmm =
ξ2
gm

ξggr2
. (4.18)

It will be a key result of this work to show that r , calculated from projected correlation, is in
fact close to one for a realistic galaxy sample that can reproduce the observed galaxy clustering.
For a discussion of our findings we refer the reader to §8 on Page 69.

4.5 Gaussian Random Fields

The seeds for structure formation are most probably of quantum mechanical origin. Hence we
can treat the density field as a noise-like random field, where the phases of the Fourier modes are
independent. From central limit theorem we know that the superposition of a large number of
independent random fields will tend to a joint normal distribution. Besides δ itself, all quantities
that can be expressed by linear sums over the modes will tend to be normally distributed. Since
the first moment of δ vanishes, the Gaussian random field is entirely determined by its power
spectrum, the variance for a certain Fourier mode.
By Wick theorem the reduced correlation functions of order higher than two either vanish or
are expressible in terms of two-point functions [Bernardeau et al. , 2002]

〈δ(k1), . . . , δ(k2n+1)〉 = 0, (4.19)

〈δ(k1), . . . , δ(k2n)〉 =
∑
pairs

∏
P{(i ,j)}

〈δ(ki), δ(kj)〉 . (4.20)

The Gaussiannity of the random field is also clear from the commutation relations for the
quantum field.

2We use the common symbol r to denote the cross correlation coefficient as there should be no confusion
with the radius r .



CHAPTER 5

Gravitational Clustering

In the last chapters we saw how small perturbations could form on a smooth background of
a Friedmann-Robertson-Walker cosmology. So far we used linearised equations to treat the
fluctuations but at some point gravitation will cause the collapse of such overdensities to form
non-linear gravitationally bound objects. Eventually the first galaxies will form in these potential
wells.
Beginning with a simple model to estimate the properties of the collapsed dark matter haloes
we will proceed to derive their abundance using the theory of peaks. Finally we will introduce
the halo model, which will be the basis for our further discussion.

5.1 Spherical Collapse Model

To develop a better understanding of the formation of structures in the Universe we will first
consider a toy model known as the spherical top-hat collapse model that will provide us
with some useful numbers of merit, useful for later calculations. Following the arguments in
[Liddle & Lyth, 2000, Padmanabhan, 1993], we postulate a spherically symmetric region with
uniform overdensity δi at initial time ti in an otherwise uniform critical density matter dominated
Universe. We will assume that the additional material is taken from a thin spherically symmetric
underdense shell around the overdensity in order to preserve the mean density. According to
Birkhoff theorem, the evolution of the Universe outside will be independent of the spherical
overdensity and the sphere will behave like a closed Universe with density parameter Ωi = 1+δ.
We consider the the Friedmann equation for the overdensity

ȧ2 =
Ωi

a
+ Ωi − 1. (5.1)

This equation has a parametric solution

a = a0(1− cos θ)
Ωi

1−Ωi
, t = t0(θ − sin θ)

Ωi

(1−Ωi)3/2
, (5.2)

where we have chosen the integration constant in order to match the time coordinates with
the rest of the Universe ti = 0. Here θ runs from 0 to 2π and the maximum expansion occurs
at θmax = π. It is convenient to express a and t in terms of their values at maximum expansion
or turnaround amax = a0Ωi(1−Ωi)

−1

a =
amax

2
(1− cos θ), t =

tmax

π
(θ − sin θ). (5.3)
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If we now expand both terms for small θ, we obtain the linear theory expression for the devel-
opment of the overdense region

alin(t) =
1

4

(
6πt

tmax

)2/3
[

1−
1

20

(
6πt

tmax

)2/3
]
. (5.4)

The first term on the right hand side describes the expansion of the critical density background
Universe. We can use above expression to derive the linear theory prediction for the density
contrast

δlin =
3

20

(
6πt

tmax

)2/3

. (5.5)

So we see that turnaround occurs when the linear density contrast is δlin(π) ≈ 1.06. At
this time the overdensity separates from the uniform expansion of the background Universe
and starts to contract even in physical coordinates1. The collapse will stop at the final time
tfin = 2π when the linear theory predicts

δlin(tfin) =
3

20
(12π)3/2 ≈ 1.686. (5.6)

Consequently we can consider any region for which linear theory predicts an overdensity of
1.686 as being just collapsed. We will use the factor δfinlin when we estimate the abundance of
dark matter haloes with the Press & Schechter approach in §5.2. In fact the actual overdensity
will become infinite at tfin. But we are not expecting the collapse to continue until the region
collapses to a point. In contrast we expect the dark matter to virialise 2 when its radius shrunk
by approximately a factor of two compared to the maximum extension. The common notion
for such a virialised dark matter overdensity is halo.
The non-linear overdensity of the virialised object can be calculated from the fact that the
density of the spherical region will increase by a factor of 8 until virialisation, whereas the
background will have expanded by a factor of about 4 by this time. The non-linear density
contrast at turnaround is 1 + δturn = 5.55 and hence at virialisation we obtain 1 + δvir ≈ 178.
This number enables us to estimate the radius-mass relation of dark matter haloes. Linear
perturbation theory fails as soon as the overdensity δ approaches unity. But since most of
the observable and thus interesting structure in the Universe has overdensities far in excess of
unity, we will have to deal with them using a fully non-linear theory. It is important to note that
above reasoning, including the numerical values, is true only for an Einstein-de-Sitter Universe.

5.2 Press & Schechter Theory of Peaks

We saw in the last section, that initial overdensities will be amplified by gravitational growth
and eventually become bound objects. An important ingredient for theories of structure for-
mation is the abundance of such bound dark matter clumps. To first order the abundance of
a halo of mass M will be a function of mass only.
An approximate, but intuitive, approach to this mass function was introduced by
[Press & Schechter, 1974]. As ingredients they just used the spherical top hat model and
linear growth theory. The assumption underlying this derivation of the mass-function is that
the probability distribution of an overdensity of mass M is Gaussian with zero mean and stan-
dard deviation σ(M), where σ(M) is the root mean square overdensity within spheres of radius
R. Linear growth leaves the shape of the initially Gaussian fluctuations unaffected and hence
we can write for the probability density

P (δM)dδm =
1√

2πσ2(M)
exp

[
−

δ2
M

σ2(M)

]
. (5.7)

1Note that the size of the region was decreasing in comoving coordinates from begin on
2Virialisation refers to the fact, that there is a equilibrium between kinetic energy and potential energy of the
halo. The corresponding dark matter particles form a bound substructure.
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As σ is a monotonically decreasing function of mass, inhomogeneities on large scales are smaller
in amplitude than those on small scales. Therefore small scale inhomogeneities will be the first
to cross the critical density threshold δc(z) that is needed to transform an overdensity into
a virialised object, an effect which is termed the bottom up picture of structure formation.
Hence the probability to have overdensities of mass M exceeding a density thereshold δc is
given by

f (M,σ) = erf
(

δc√
2σ

)
, erf(x) =

1√
π

∫ ∞
x

exp
[
−x2

]
dx. (5.8)

Guided by linear theory and the spherical collapse model Press & Schechter assumed δc ≈ 1.686

for the Einstein-de Sitter case. The above probability is equivalent to the fraction of points
that exceeds the threshold. Actually we are interested in the number of collapsed objects of a
certain mass, thus we have to calculate the number of objects, which are collapsing at a certain
time by subtracting P (M + dM) − P (M) and multiplying by the maximum possible number
density of objects ρ̄/M

n(M)dM =
ρ̄

M
[P (M + dM)− P (M)] dM =

ρ̄

M

∣∣∣∣df (δ, σ)

dσ

∣∣∣∣ dσdM dM. (5.9)

After some algebra we obtain

n(M)dM =
ρ̄

M

√
2

π
exp

[
−

δ2
c

σ2(M)

]
δc

σ2(M)

dσ

dM
dM. (5.10)

This equation is often written in terms of the peak height

ν :=

[
δc

σ(M)

]2

, (5.11)

which yields the well known form of the massfunction

M

ρ̄
n(M)dM = f (ν)dν =

1

ν

√
ν

2π
exp

[
−
ν

2

]
. (5.12)

A problem which arises in the above heuristic reasoning is that we did not account for the
possibility that a structure collapsing at z can be part of a larger structure collapsing at the
same time, a subtlety termed the cloud in cloud problem. Furthermore only half of the points
are associated with an overdensity and collapse. This problem can be eluded by multiplying
the number density with a factor of two. The Press & Schechter mass-function underes-
timates the abundance of massive halos in N-body simulations and has been improved by
[Sheth & Tormen, 1999] to give a better fit to the simulations

νf (ν) = A(p)

[
1 +

1

(qν)p

](qν
2π

)1/2

exp
[
−
qν

2

]
. (5.13)

The parameters used by Sheth & Tormen are q = 0.707 and p = 0.3 and the choice q = 1,
p = 0 recovers the Press & Schechter formula. The prefactor A of the Sheth & Tormen mass
function is determined by the constraint∫

n(M)MdM =

∫
f (ν)dν = ρ̄. (5.14)

Figure 5.1 shows both theoretical massfunctions and the actually measured massfunction for
simulation outputs at redshift z = 0 and z = 0.23. We clearly see the failure of the Press &
Schechter for the high mass haloes probed in our simulation. For the mass function at z = 0.23

we scaled σ(M) using the linear growth factor

σ(M, z) =
D1(z)

D1(0)
σ(M, 0). (5.15)

Often one defines a characteristic mass scale M∗ which is collapsing at present time and hence
has ν(M∗, z) = 1.
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Figure 5.1: Mass-function as measured for the simulation outputs at redshift z = 0 (blue) and z = 0.23

(green). For comparison we show the [Press & Schechter, 1974] (solid) and [Sheth & Tormen, 1999]
(dashed) mass-functions. Press & Schechter underestimates the abundance of massive haloes, whereas
Sheth & Tormen gives a reasonable fit to the measurement.

5.3 Mass Dependent Halo Bias

Following an approach presented in [Cooray & Sheth, 2002] we can consider the space divided
up in cells of comoving volume V containing different amounts of mass M which leads to
different densities δ0. Each of this cells will contain a specific number of halos of mass m
denoted by N(m|M, V ). We can now calculate the overdensity of such halos with respect to
the mean number of collapsed objects of a certain mass given by the Press & Schechter or
Sheth & Tormen approach

δh(m) =
N(m|M, V )

n(m)V
− 1. (5.16)

N(m|M, V ) can be considered as a modified version of the known mass function, accounting
for the overdensity δ0 of the cell under consideration.

ν̃ =
[δc(z1)− δ0(z1)]2

σ2(m)− σ2(M)
(5.17)

Carrying out the manipulations up to lowest order in the large cell limit we get an equation
that tells us that the overdensity of halos is proportional to the overdensity in mass.

δh(m) =

(
1 +

ν − 1

δc(z1)
+

2p

δc(z1)

1

1 + (qν)p

)
δ0 = b(m)δ0 (5.18)

The overdensity of halos in large cells is linearly dependent on the overdensity of the mass in
this cell. Massive halos with M > M∗ are said to be biased relative to the dark matter and
have b(m, z1) > 1. The bias is dependent on the halo mass m and the redshift of virialisation
z1. This proportionality directly affects the halo-halo autocorrelation as well as the halo-halo
power spectrum.

ξhh(r |M1,M2) = b(M1)b(M2)ξlin(r) (5.19)

Bias also refers to the fact, that the galaxy-clustering will be enhanced with respect to the mass
by a scale independent factor b. As we will see this galaxy bias naturally arises from the halo
model description of the galaxy clustering. The scale independence was subject to numerical
and analytical investigations which came to the conclusion, that bias in fact is changing with
radial distance.
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5.4 Halo Density Profiles

Halos can be considered as peaks in the initial density field. Massive halos therefore corre-
spond to higher peaks in the initial fluctuation field. From spherical top hat collapse we know
that virialised objects have a mean mass excess of about δ ≈ 180 (for an Einstein-de Sitter
toy model) compared to the uniform background density. The sphere within which the mean
density is δvir times the background density is bounded by the virial radius rvir, and contains
the total mass of the halo Mvir. The spherically averaged radial distribution of mass within a
halo is called the halo density profile. This profile is considered to depend in first order only
on the mass of the halo, and can be understood as an average over all halos of a given mass.
A profile introduced by Navarro, Frenk & White (NFW) [Navarro et al. , 1996] has been ex-
tensively studied and provides good fits to N-body simulations.

ρ(r |m) =
ρs(

r
rs

)α(
1 + r

rs

)β =
ρs(

y
)α(

1 + y
)β . (5.20)

In the last equality we introduced the parametrisation y := r/rs. This profile has the logarithmic
slope

d ln ρ

d ln r
= −α− β

y

1 + y
, (5.21)

That is, it decreases as r−α for small scales and as r−α−β for larger scales. Parameters
α = 1, β = 2 were proposed by NFW but there is no consensus about the inner slope, leading
to different values for α in the literature [Cooray & Sheth, 2002]. The free parameters of the
model are the scale radius rs and the density at this radius ρs. The latter follows from the
condition

M =

∫ rvir

0

ρ(r |M)4πr2dr, (5.22)

which for the NFW profile leads to

ρs =
M

4πr3
s

(
ln (1 + c)− c

1+c

) . (5.23)

Here we introduced the concentration parameter

c =
rvir
rs
. (5.24)

In the easyest case the concentration parameter will be a function of halo mass only, and can
be modeled by a power law

c(M) = c0

(
M

M∗

)γ
. (5.25)

Here M∗ is the non-linear mass scale and we find for the cosmology used in our simulations,
that M∗(z = 0) = 2.73 × 1012 h−1M� and M∗(z = 0.23) = 1.47 × 1012 h−1M�. According
to [Cooray & Sheth, 2002] the halo concentration follows a log-normal distribution around the
mean

c̄(M, z) =
9

1 + z

[
M

M∗

]−0.13

. (5.26)

The negative exponent in above formula expresses the fact that more massive haloes are more
centrally concentrated.

5.5 Halo Model & Halo Occupation Distribution

The halo model assumes that all the mass in the Universe is partitioned up into distinct units,
which are small compared to the distance between this units. These finite clumps of mat-
ter are often called halos. In Figure 5.2 we show the projection of the dark matter density
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field calculated with a N-body code together with the positions of a synthetic galaxy sam-
ple. From a phenomenological point of view, one sees in N-body simulations that the matter
clumps are connected by tubelike matter filaments and that there are also large voids, which
are almost devoid of matter. A comprehensive review of the halo model was compiled by
[Cooray & Sheth, 2002].

xFigure 5.2: Dark matter density field in a box of width ∆x = ∆y = 200 h−1Mpc and thickness
∆z = 100 h−1Mpc. We overplot the positions of bright LRGs from our best fit model at redshift
z = 0.23.

This clumpiness of the dark matter leads one to model the clustering by an appropriate su-
perposition of small and large scale contributions. On small scales the statistics are mainly
influenced by the inner structure of the halo, whereas on large scales the spatial distribution of
the halos becomes important.
If we want to use the halo model to calculate clustering statistics we have to put together the
following ingredients:
• a mass function, which describes the abundance of haloes of a given mass
• a halo biasing scheme, which describes how strongly the haloes are clustered with respect
to the matter
• a profile which describes how the dark matter and the galaxies are distributed within their
host halo
• the occupation statistics, which describe how many central and satellite galaxies reside
on average within a halo of given mass and the statistic which describes the distribution
of the actual number around the mean

The halo occupation distribution quantifies the conditional probability P (N|M) that a dark
matter halo of mass M contains N galaxies of a certain type. In principle physics of galaxy
formation should determine the relation between galaxy and dark matter distribution, but it is
reasonable to assume that galaxies are, at least to some degree, biased tracers of the under-
lying dark matter density field and its haloes.
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While the exact spatial distribution of galaxies within their host halo will depend on baryonic
processes, such as gas dynamics, radiative cooling and star formation, the large scale distribu-
tion of the haloes themselves is entirely determined by the gravitational clustering. So the HOD
provides a framework in which the background cosmological evolution can be supplemented by
a phenomenological description of galaxy formation. Having determined the free parameters
of the HOD we can in principle extract all the needed information from the model: the small
and large scale clustering, the bias, properties of host haloes and redshift space effects. Due
to its conceptual simpleness it provides intuitive physical interpretations for simulations and
observations.
The basic principles of a HOD were first introduced by [Neyman & Scott, 1952], who disentan-
gled galaxy clustering into clustering of clusters and the distribution of galaxies within clusters.
This theoretical approach caused new excitement in the community when analytical tools for
the prediction of the clustering properties of haloes [Sheth & Tormen, 1999] and for the mass
distribution within the haloes [Navarro et al. , 1996] became available. It was recognised that
the occupation statistics could be used to extend the calculations for dark matter cluster-
ing to biased tracers, such as haloes and galaxies [Seljak, 2000a, Peacock & Smith, 2000,
Berlind & Weinberg, 2002].
The occupation number for galaxies of a certain brightness will be mainly influenced by the host
halo mass and provides a means to constrain theories of galaxy formation. Bright galaxies will
not be able to form in light haloes, since there is not enough cold gas and thus it is intuitive
to translate thresholds in luminosity into thresholds in mass, including some mechanism to
account for the scatter introduced by e.g. merging processes.
The halo occupation distribution was used successful in the literature for a wide variety of
studies. It was used to interpret the LRG clustering in the SDSS by [Reid & Spergel, 2008,
Reid et al. , 2008], redshift space distortions were studied by [Tinker, 2007] and the supernovae–
galaxy correlation was modeled by [Padmanabhan et al. , 2008].
We will not explore the analytical modelling of the dark matter or galaxy clustering with the
halo model, but it is helpful to develop an understanding, which quantities contribute to the
clustering statistics.
Figure 5.3 gives a schematic overview of the halo model. In the top left panel we show two
nearby dark matter haloes together with the galaxies hosted by the haloes. The haloes are
distinct dark matter clumps defined by their virial radii and are non-overlapping by definition.
A basic building block of the correlation functions in the halo model is the clustering of the
haloes themselves. This clustering can be approximated by a phenomenological bias and the
linear matter correlation

ξhh(r |M1,M2) ≈ b(M1)b(M2)ξlin(r). (5.27)

The matter-matter autocorrelation shown in the top right panel of Figure 5.3 is a sum of
the correlation between the dark matter particles within one halo and the correlation of the
dark matter particles within two distinct haloes. The one-halo term is essentially a convolution
of the dark matter profile with itself, whereas the two halo term is a superposition of the halo
profile of the two haloes and the clustering of the haloes themselves.
To model galaxy–dark matter cross-clustering correctly we have to distinguish the contributions
of central and satellite galaxies, where the latter has to be described by the satellite profile.
The centrals are allways assumed to sit at the haloes centre of mass. In the bottom left
panel of Figure 5.3 we show schematically the following terms that can contribute to to the
galaxy-matter cross-correlation.

one halo two halo
central central
satellite satellite
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(a) dark matter haloes (b) matter–matter autocorrelation

(c) galaxy–matter cross-correlation (d) galaxy–galaxy autocorrelation

Figure 5.3: Visualisation of the terms contributing to the correlation functions in the halo model.
Ellipses are dark matter haloes whereas the red circles are galaxies residing in this haloes. We denote
one and two halo terms by 1H and 2H and central and satellite contributions by c and s, respectively.

Finally, the bottom right panel of Figure 5.3 visualises the terms contributing to the galaxy-
galaxy autocorrelation:

one halo two halo
central-satellite central-central
satellite-satellite central-satellite

– satellite-satellite



CHAPTER 6

Gravitational Lensing

We will now review the theoretical foundations of light deflection by gravitational fields. In the
context of general relativity light propagates on the null geodesics of the spacetime metric. The
general setup of gravitational lensing is shown in Figure 6.1. Light, or more generally radiation,
from a source is deflected by the gravitational potential of the energy density distribution along
the line of sight, and is finally observed as an image by the observer. If the there is only one
dominant deflector along the line of sight, which has a radial extension much smaller than the
angular diameter distances to the lens and to the source, we can approximate the deflected
light ray by two straight rays which kink in the lens plane. This bending of light toward the
observer depends on the distances between source, lens and observer and on the total mass
of the lens. Strong gravitational lensing leads to multiple images of a source and can even
produce arcs and rings.
We will first give an overview over general lensing theory and then focus on weak-lensing,
especially galaxy-galaxy lensing. For a more detailed treatment we refer the reader to textbooks
on general relativity and the excellent review by [Bartelmann & Schneider, 2001].

6.1 Basic Principles of Gravitational Lensing

We will consider general relativity in its weak field limit, i. e. we decompose the metric into a
flat background metric plus a small perturbation gµν = ηµν + hµν

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)
(
dx2 + dy2 + dz2

)
. (6.1)

Consequently the light geodesic can be decomposed in a straight zero order null curve and a
perturbation on it xµ(λ) = x (0)µ + x (1)µ. This means that the smooth bending of the light
ray can be approximated by a kink in the lens plane with a deflection angle given by (see e. g.
[Carroll, 2004])

α̂ = 2

∫
∇⊥Φds. (6.2)

The easyest case to consider is a light ray passing a gravitational point source with impact
parameter b, for which general relativity predicts a deflection angle of1

α̂ =
4GM

c2b
. (6.3)

Alltogether, we will adopt the following assumptions widely used in lensing theory: First the

1Remarkably thats twice the value which can be obtained from Newtonian gravity by treating light as a particle.



40 | 6.1. Basic Principles of Gravitational Lensing

3 Gravitational Light Deflection

In this section, we summarise the theoretical basis for the description of light de-
flection by gravitational fields. Granted the validity of Einstein’s Theory of General
Relativity, light propagates on the null geodesics of the space-time metric. How-
ever, most astrophysically relevant situations permit a much simpler approximate
description of light rays, which is called gravitational lens theory; we first describe
this theory in Sect. 3.1. It is sufficient for the treatment oflensing by galaxy clus-
ters in Sect. 5, where the deflecting mass is localised in a region small compared
to the distance between source and deflector, and between deflector and observer.
In contrast, mass distributions on a cosmic scale cause small light deflections all
along the path from the source to the observer. The magnification and shear effects
resulting therefrom require a more general description, which we shall develop in
Sect. 3.2. In particular, we outline how the gravitational lens approximation derives
from this more general description.

3.1 Gravitational Lens Theory

Observer

Lens plane

Source plane

θ

β

ξ

α̂

η

Dds

Dd

Ds

Fig. 11. Sketch of a typical gravitational lens system.
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Figure 6.1: Setup for the lensing from [Bartelmann & Schneider, 2001]. A photon emitted in the
source plane travels on a null geodesic until it is deflected by the energy distribution in the lens plane.
Finally the photon that in the absence of lensing would be observed under an angle β is observed under
the angle θ.

gravitational field is assumed to be weak, i. e. the motion of rigid bodies can be described
by Newtonian gravity. Second the extent of the lens mass is negligible compared to the
lens-source and observer-lens distance, which implies that we only have to consider the two
dimensional projection of the mass to the lens plane. Third, and most important for the weak
field approach to be valid is that the involved radii are large compared to the Schwarzschild
radius r = 2GM/c2. According to the second point made above, in the following we will be
concerned with two dimensional vectors, representing either distances or angles. The conversion
of lengths perpendicular to the line of sight into distances can be easily performed using the
angular diameter distance.
In the weak field limit, applicable to almost all astrophysical relevant situations, the total
deflection can be calculated by a superposition of deflections caused by point masses

α̂(ξ) =
4G

c2

∫
d2ξ′

∫
dχρ(ξ, χ)

ξ − ξ′

|ξ − ξ′|2
, (6.4)

where χ is the distance along the line of sight and ρ is the density.
This definition can be further simplified by the definition of the projected surface mass density

Σ(ξ) =

∫
dχρ(ξ, χ). (6.5)

With the knowledge of the deflection angle we can now write down the lens equation for the
angles defined in Figure 6.1

β(θ) = θ −
Dds

Ds
α̂(θ) = θ −α(θ). (6.6)

Note that we redefined α and that above equation is only true, if the distance to lens and
source galaxies is the same for all galaxies in the sample. We will come back to this issue
below. Above equation is an implicit equation for θ, i. e. for given galaxy position β there can
be more than one solution, an effect which can lead to multiple images in the strong lensing
regime.
We can now define the critical surface mass density and the convergence

Σcrit :=
c2Ds

4πGDdsDd(1 + zd)
, κ :=

Σ

Σcrit
, (6.7)
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where Ds, Dd, Dds are the angular diameter distances to the source, to the lens and between
lens and source, respectively. From (6.4) one easily sees that α can be written as the gradient
of the lensing potential

ψ(θ) =
1

π

∫
d2θ′κ(θ′) ln |θ − θ′|, (6.8)

as α = ∇ψ. The lensing potential is the two dimensional analogue of the gravitational potential
and satisfies a Poisson equation2

2κ = ∇2ψ = ∂2
1ψ + ∂2

2ψ. (6.9)

We will now consider the case that the angular scale of the source is much smaller than the
scale over which the mass distribution in the lens plane changes significantly. In this limit we
can expand the deflection around the solution for the centre of the source, and the distortion
of images is described by the Jacobian matrix

β = β0 +A(θ0)(θ − θ0), (6.10)

where

A(θ) =
∂β

∂θ
=

(
δi j −

∂2ψ(θ)

∂θi∂θj

)
=

[
1− κ 0

0 1− κ

]
+

[
−γ1 −γ2

−γ2 γ1

]
. (6.11)

In above equation we introduced the components of the complex shear γ = γ+ + iγ×

γ+ =
1

2

(
∂2

1ψ − ∂2
2ψ
)
, γ× = ∂1∂2ψ. (6.12)

It is important to note that the shear transforms under a rotation of the coordinate frame by
an angle ϕ, as γ′ = γ exp [i2ϕ], i. e. it is a polar rather than a vector.
The magnification describes the ratio of the flux observed for the image to the flux one would
observe for the unlensed image and is given by the determinant of the Jacobian

µ =
1

(1− κ)2 − |γ|2 . (6.13)

For axisymmetric mass distributions one can derive [Schneider, 2006]

|γ| = κ̄(θ)− κ(θ), (6.14)

where κ̄(θ) is the mean convergence within a circular annulus of radius θ. We will not show
the derivation here but rather consider the more general case of non-axisymmetric lenses in
the context of galaxy-galaxy lensing in §6.4 below.

6.2 Weak Lensing

The matter distribution of elliptical galaxies can be probed at small scales using velocity dis-
persion measurements and a bit further out using kinematic tracers such as satellite galaxies.
Other measurements, such as X-ray emission or strong lensing, have been performed on in-
dividual clusters, but so far this analysis has not converged to a single picture, owing to the
lack of statistical power. Weak lensing in contrast can be used to investigate the dark matter
distribution around a large number of central galaxies and to probe it out to several 10 h−1Mpc.
In most cases the lens is not strong enough to form multiple images or arcs. If the light coming
from a distant galaxy population passes through the gravitational field of a foreground mass en-
semble the shape of the galaxy images is stretched by the tidal component of the gravitational
field and the apparent brightness is changed by the magnification associated with gravitational
lensing. As most galaxies have an intrinsic ellipticity, we are not able to directly infer the tidal

2If not otherwise stated all derivatives are with respect to components of vector θ, i.e. ∂1 = ∂/∂θ1.
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gravitational field from the shape of the images. Under the assumption of randomly oriented
intrinsic ellipticity with net ellipticity small compared to Poisson noise, we can infer the strength
of the gravitational field using a set of images.
The above equations can be conveniently rewritten in terms of the reduced shear

g(θ) =
γ(θ)

1− κ(θ)
. (6.15)

So that the Jacobian matrix for the lensing becomes

A = (1− κ)

[
1− g1 −g2

−g2 1 + g1

]
, (6.16)

and the eigenvalues reduce to λ± = 1± |g|.
For elliptical images with axis ratio a/b and position angle of the major axis ϕ we can define
the complex ellipticity by3

ei = e+ + ie× =
1− (a/b)2

1 + (a/b)2
exp [2iϕ]. (6.17)

The weak lensing regime regime is defined by |γ| � 1, κ� 1 and hence we have g ≈ γ.
The ellipticity of a single source galaxy contains little information, since the intrinsic ellipticity
is unknown. We will consider an ensemble of galaxy images close to the reference point θ0

such that the local expansion of the lens equation (6.10) is valid. We will further assume that
the expectation of the source ellipticities vanishes

〈es〉 = 0. (6.18)

Assuming that all sources are at the same redshift, the ellipticity of a circular source is given
by the ratio of the eigenvalues of A. This remains true for the net ellipticity of an ensemble
of images if the net ellipticity of the sources vanishes. The ratio of the eigenvalues can be
rewritten using the reduced shear and further simplified using the weak lensing approximation

|e| =
λ−
λ+

=
1− |g|
1 + |g| ≈ 1− 2 |γ| . (6.19)

Above equation is just another way of stating

ei = es − 2g. (6.20)

Using 〈es〉 = 0 and (6.17) we obtain:

γ ≈
〈ei〉

2
≈

1− (a/b)2

1 + (a/b)2

exp [2iϕ]

2
(6.21)

We will see below that this expression has to be adapted for real measurements.

6.3 Galaxy-Galaxy Lensing

Galaxy-galaxy lensing measures the tangential elongation of background galaxies by the dark
mass around the lens galaxy. These shape distortions are generally very weak and hence large
numbers of lenses have to be stacked to obtain sufficient signal-to-noise.
The quantity most directly related to galaxy-galaxy lensing is the tangential shear γt. It

describes the distortion of the image shape perpendicular to the line connecting the image and
the lens galaxy and is given by the 2-d shear rotated to the frame defined by the image and
the lens (see Figure 6.2)

γt(θ) = −γ+(θ) cos(2β) + γ×(θ) sin(2β), (6.22)

3More generally this quantity is defined by the tensor of second brightness moments.
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Figure 6.2: The dark halo at the origin of the Cartesian frame (θ1, θ2) leads to a tangential stretching
of the images of background galaxies. The shear can be determined from the ratio of the major-axis
a, b of background galaxies, measured in a frame defined by the axis connecting the halo and the
galaxy.

where β is the angle between the x-axis and the line defined by the lens and the image. As we
will show in §6.4, the circular averaged tangential shear is related to the excess surface mass
density [Miralda-Escude, 1996]

∆Σ(R) = Σ̄(R)−Σ(R) = 〈γt(R,ϕ)〉ϕ Σcrit, (6.23)

where Σ(R) is the projected surface mass density and Σ̄(R) is its average over a circular
aperture

Σ̄(R) =
2

R2

∫ R

0

Σ(R′)R′dR′. (6.24)

For the interpretation one assumes that the lensing is associated with the overdensity around
this galaxy and hence with the galaxy-matter cross-correlation

Σ(R) =

∫ χmax

−χmax

ρ̄
[

1 + ξgm(
√
R2 + χ2)

]
dχ. (6.25)

Note that the constant ρ̄χmax cancels out when calculating ∆Σ, so that we can omit it in the
following. This relation reveals the potential of galaxy-galaxy lensing – from the measurement
of the tangential shear one can recover the dark-matter density field.
To calculate γt one measures the ellipticity of the images around a lens galaxy in a fixed
Cartesian frame, calculates γ = γ+ + γ× in this frame and then transforms it to the tangential
frame.
If we use a sample of source galaxies, with a radial distribution W (χs) instead of an exact
distance the critical surface mass density is no longer a constant and has to be included in the
integral in (6.7)

κ(θ) = 4πG

∫ ∞
−∞

g(χ)ρ(θ, χ)dχ, (6.26)

where

g(χ) = DA(χ)

∫ +∞

χ

DA(χs − χ)

DA(χs)
W (χs)dχs, (6.27)

is an effective critical surface mass density for the source distribution.
Measuring γ with sufficient signal-to-noise requires large numbers of background galaxies,
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since the shape distortions due to a typical dark matter halo associated with the lens galaxy
are very weak. As an additional problem it was shown that the background galaxies have non-
zero intrinsic ellipticities [Hirata et al. , 2007]. The signal is therefore calculated by stacking
thousands of lens galaxies resulting in a shear signal, which is an average over the proper-
ties of galaxies in a certain luminosity bin, or equivalently haloes within a certain mass bin
[Miralda-Escude, 1991, Cacciato et al. , 2008].
The fact that lensing can only be detected, when the signal of many lenses is stacked hampers
the interpretation in terms of the connection between galaxies and dark matter haloes. The
galaxies reside in haloes of different mass and hence the lensing signal is a nontrivial average
of the lensing produced by haloes of very different masses. Furthermore one has to distinguish
between central and satellite galaxies as they cause different lensing signals. This requires
knowledge about the satellite/central fraction and the spatial distribution of satellites within
their dark matter haloes. Both effects have been studied using numerical N-body simulations
[Mandelbaum et al. , 2005, Hayashi & White, 2007].

6.4 Derivation of the Mass-Shear Relation

For the analysis of galaxy-galaxy lensing we have to relate the tangential shear to the excess
surface mass density. To do so we consider the two dimensional version of Gauss theorem on
a ball with radius R = θDd around the origin of a (θ1, θ2) coordinate system∫

BR

d2R′∇2
R′ψ(R′, ϕ′) =

∮
C(BR)

dSn ·∇ψ(R′, ϕ′), (6.28)∫
Bθ

d2θ′∇2
θ′ψ(θ′, ϕ′) =

∮
C(Bθ)

dSn ·∇ψ(θ′, ϕ′), (6.29)

where ψ is an arbitrary scalar function and n is the outwards pointing normal to the circle.
Recalling the definitions of the convergence and shear

2κ =
(
∂2
θ1

+ ∂2
θ2

)
ψ, 2γ1 =

(
∂2
θ1
− ∂2

θ2

)
ψ, (6.30)

we can define a quantity m(θ) considering ψ in equation (6.29) as the deflection potential

m(θ) :=

∫
Bθ

d2θ′∇2
θ′ψ(θ′) = 2

∫
Bθ

d2θ′κ(θ′) (6.31)

=θ

∫ 2π

0

dϕ′∂θψ(θ′), (6.32)

where we rewrote the directional derivative n ·∇ψ = ∂θψ. Differentiation of m with respect
to θ yields

dm

dθ
=
m

θ
+ θ

∫ 2π

0

dϕ′∂2
θψ(θ′). (6.33)

We now consider a point on the θ1-axis, such that

∂2
θψ = ∂2

θ1
ψ = κ+ γ1 = κ− γt. (6.34)

Above equality is independent of the choice of the polar angle ϕ and hence valid for all points
on the circle. The integral over ϕ yields an angular average over the circle of radius θ, such
that

dm

dθ
=
m

θ
+ 2πθ

(
〈κ(θ, ϕ)〉ϕ − 〈γt(θ, ϕ)〉ϕ

)
. (6.35)

These angular averages can also be obtained by rewriting the lhs of Gauss theorem

m(θ) = 4π

∫ θ

0

dθ′θ′ 〈κ(θ′, ϕ)〉ϕ ⇒
dm

dθ
= 4πθ 〈κ(θ, ϕ)〉ϕ . (6.36)
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To conclude we divide (6.35) and (6.36) by 2πθ and equate

1

2πθ

dm

dθ
= 2 〈κ(θ, ϕ)〉ϕ =

1

πθ2

∫
Bθ

d2θ′κ(θ′) + 〈κ(θ, ϕ)〉ϕ − 〈γt(θ, ϕ)〉ϕ (6.37)

The first term on the rhs is the average convergence within a circle κ̄(θ). Changing the variables
back to lengths we see

〈γt(θ, ϕ)〉ϕ =
1

πR2

∫
BR

d2R′κ(R′, ϕ′)− 〈κ(R,ϕ)〉ϕ (6.38)

=κ̄(R)− 〈κ(R,ϕ)〉ϕ , (6.39)

which upon multiplication with the critical surface mass density yields the result (6.23)

Σc 〈γt(R,ϕ)〉ϕ = Σ̄(R)−Σ(R), (6.40)

where we implicitly defined Σ(R) := Σc 〈κ(R,ϕ)〉ϕ as the angular averaged surface mass den-
sity. In this derivation we did not make use of axial symmetry, but rather defined our observable
as the angular average of the measured tangential shear. The benefit of this procedure is that
we obtained a result, which is valid even for unsymmetric lenses, leading to the validity of
equation (6.23) not only for the stacked set of lenses, but for each single lens.

6.5 The Lens-Galaxy Sample

Our goal is to create galaxy catalogues for the haloes identified in large scale cosmological simu-
lations. Due to the limited mass resolution we can only identify haloes above 1.3×1013 h−1M�,
i. e. the most massive haloes in the Universe. Consequently we have to look for a galaxy
sample that occupies such massive haloes and for which there are well constrained cluster-
ing and galaxy-galaxy lensing measurements. A well suited candidate is the Luminous Red
Galaxy (LRG) sample that consists of early type galaxies, selected in the Sloan Digital Sky
Survey [York et al. , 2000] based on cuts in colour and luminosity. The galaxies typically have
a strong break at 4000Å and a passively evolving stellar population. As the LRGs are strongly
clustered and have a low space density, they are an efficient probe of the large scale struc-
ture of the Universe, which makes them well suited for cosmological parameter constraints
[Tegmark et al. , 2006].
LRGs are hosted by a variety of environments from the field to rich clusters, but the majority
resides in group to cluster sized haloes [Vikhlinin et al. , 1999]. Studies on LRG host halo
shapes and masses [Mandelbaum et al. , 2006a] have proven that they are good tracers of the
most massive galactic haloes.
We use galaxy-galaxy lensing and clustering measurements for the LRG sample from the SDSS
by [Mandelbaum et al. , 2006a]. The lens sample consists of 43 335 LRGs with spectroscopic
redshifts in the range 0.15 < z < 0.35. The upper cutoff in redshift was chosen in order to
have a sufficient number of background galaxies for the lensing.
[Mandelbaum et al. , 2006a] split this LRG sample into two equal signal-to-noise bins: LRGfaint
and LRGbright. LRGbright is the brightest 1/3 of the total number density n̄tot = 1.2 ×
10−4 h3 Mpc−3. Properties of the two samples are listed in Table 6.1, and here we also quote
estimates for the low mass cutoff of the two samples. The effective redshift of both lens
samples is zeff = 0.24, leading us to use a simulation snapshot from z = 0.23 to calculate our
theoretical predictions.
The source sample consists of over 30 million galaxies with r-band magnitude brighter than

21.6 from the SDSS imaging sample. For the shear measurements a Gaussian profile with
elliptical isophotes is fit to the data and the ellipticity components are calculated

(e+, e×) =
1− (b/a)2

1 + (b/a)2
(cos 2ϕ, sin 2ϕ), (6.41)
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n̄meas[h
3 Mpc−3] Mr Mcut[1013 h−1M�]

LRGfaint 4× 10−5 <-22.3 2.5
LRGbright 8× 10−5 >-22.3 6

Table 6.1: Properties of the LRG subsamples as defined in [Mandelbaum et al. , 2006a]. The masses
were estimated using the abundance and the Sheth & Tormen mass-function under the assumption
that the LRGs occupy the most massive haloes. For the bright sample a hard threshold in mass was
assumed for the central galaxies, whereas for the faint sample a top-hat window, with upper cut given
by the bright sample, was applied.

where a, b are the lengths of the major axis and ϕ is the position angle of the major axis. In
the weak lensing regime these ellipticity components directly relate to the shear

(γ+, γ×) =
1

2R
〈(e+, e×)〉 , (6.42)

where R is the empirical shear responsivity. One further difficulty arises in the calculation
of Σcrit for the source-lens setup, since the source galaxies have no spectroscopic redshift
information. Here different techniques are used to infer to the photometric redshift distribution
for subsamples of the source galaxies and we refer the reader to [Mandelbaum et al. , 2006a]
for technical details. To estimate the covariance matrices of the measurement, the survey area
was split into 200 subregions, from which 2500 bootstrap resamplings were generated.



CHAPTER 7

Methodology

This chapter is devoted to the methods used to examine the N-body simulations and to generate
galaxy catalogues. We will start with a short description of the simulations, the N-body code
and the halo finder, since most of the results are based on simulation outputs. As the goal
is to fit projected correlation functions, to galaxy-galaxy clustering and galaxy-galaxy lensing
measurements, we have to develop a method that can perform the calculations fast, for a
large range of scales and furthermore exactly. We use a Fast Fourier Transform (FFT) method
that works with different box sizes, to obtain the high resolution with reasonable grid sizes and
compare this method to a slower, but exact, direct summation method. With these tools at
hand we proceed with the fitting procedure and finally comment on redshift space distortions.

7.1 The zHORIZON Simulations

We use the Zürich horizon “zHORIZON” simulations, a suite of 30 pure dissipationless dark
matter simulations of the ΛCDM cosmology in which the matter density field is sampled by Np =

7503 dark matter particles. The box length of 1500 h−1Mpc together with the cosmological
parameters given in Table 2.1 then imply a particle mass of Mdm = 5.55× 1011 h−1M�. This
simulation volume enables high precession studies of the fluctuations in the ΛCDM model on
scales up to a few hundred comoving megaparsecs [Smith, 2008].
The simulations were carried out on the ZBOX2 and ZBOX3 computer-clusters of the Institute
for Theoretical Physics at the University of Zurich using the publicly available GADGET-2 code
[Springel, 2005]. This code was used to calculate the nonlinear gravitational evolution of the
N equal mass particles. The cosmological parameters are similar to the best fit parameters
published by the WMAP team [Spergel et al. , 2003, Spergel et al. , 2007].
As noted above we are not considering the gas dynamics of the baryons but we have to account
for their gravitational potential anyway. This is done by considering the total matter density
Ωm = Ωb + Ωdm for the simulations.
The transfer function to initial redshift zi = 50 was calculated using the CMBFAST code of
[Seljak & Zaldarriaga, 1996]. For each simulation a realisation of the power spectrum and the
corresponding gravitational potential were calculated. Particles were then placed on a cartesian
grid of spacing ∆x = 2 h−1Mpc and displaced according to a second order equivalent of the
Zeldovich approximation (see §3.2 on Page 18). The displacements and initial conditions were
computed with the 2LPT code of [Scoccimarro, 1998]. We show projections of the dark matter
density field at redshifts z = 20, 10, 3, 2, 1, 0.5 in Figure 7.1. Here we also see the motion of the
particles away from the uniform initial grid and the evolution towards the large scale structure
with haloes, filaments and voids.
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Unfortunately we can not fully profit from the statistical power of all 30 simulations of the
same cosmology because there is no snapshot at the redshift required for our LRG studies in
22 out of the 30 simulations. This limits our effective volume to V = 27 h−3Gpc3. In Table
7.1 we quote the redshifts available from the first eight volumes of the zHORIZON simulations.
The forces in cosmological N-body simulations have to be softened in order to avoid two
particle collisions. The force softening length of the simulations used for this work was set to
7× 10−2 h−1Mpc and consequently we should not trust results on scales below the softening
length.

snapshot 016 015 014 013 012 011 010 009 008
z 0.0 0.08 0.15 0.23 0.32 0.41 0.51 0.62 0.74

snapshot 007 006 005 004 003 002 001 000
z 0.86 1.00 2.00 3.00 5.00 10.00 15.00 20.00

Table 7.1: Redshifts available from the first eight volumes of the zHORIZON simulations.

7.2 N-Body Codes

Modern cosmology is highly dependent on computer simulations. Due to the lack of ana-
lytic formalisms to treat the non-linear gravitational dynamics and hydrodynamics the simula-
tions are sometimes the only way to confront experimental data with theoretical predictions
[Bertschinger, 1998].
GADGET-2 is a massively parallel TreeSPH code, which can follow the dynamics of collisionless
fluids with the N-body method and can treat ideal gases by the smoothed particle hydrodynam-
ics method (SPH). We however switch off the gas dynamics part since we are mainly interested
in large scale effects, which are governed by the collissionless dynamics of the dark matter dis-
tribution. For cosmological N-body simulations the direct calculation of the gravitational force
needs O(N2) operations and is hence computationally expensive and many methods have been
invented to perform this task in a more efficient way. In GADGET-2 the gravitational forces
can be computed with a pure Tree code, which uses a hierarchical multipole expansion of the
gravitational field. To speed the method further up GADGET-2 offers a TreePM method, which
uses the exact Tree method for small scales and high speed Fast Fourier Transforms (FFTs)
to solve Poissons equation on large scales. These so called particle mesh (PM) methods are
the fastest way to calculate gravitational forces, but at scales close to the mesh size the force
is heavily suppressed.
In principle the continuous dark matter density field would be described by Boltzmanns equa-
tion coupled to Poissons equation in an expanding Friedmann-Lemaître Universe. However,
to make the problem computationally treatable the phase space density is sampled by a finite
number of tracers. We will refer to these tracers as dark-matter particles, but note that their
masses are orders of magnitude above the expected masses for real dark-matter particles such
as WIMPs or Axions. The Hamiltonian of the system is given by [Springel, 2005]

H =

N∑
i=1

p2
i

2mia2
+

1

2

N∑
i ,j=1

mimjϕ(xi − xj)

a
. (7.1)

Here we used comoving coordinates and defined canonical momenta by pi = a2mi ẋi . Periodic
boundary conditions are assumed for the box. The Tree code groups distant particles into cells
and allows their gravitational action to be accounted for by a single multipole force. So the
computation of the gravitational force on a single particle reduces from O(N) operations to
O(logN) operations. The accuracy of the method can be adapted to the specific requirements
by choosing an appropriate opening criterion, at which the code uses a finer subdivision of
space.
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Figure 7.1: Dark matter clustering pattern in the simulations for redshifts z = 20, 10, 3, 2, 1, 0.5 from
left to right and top to bottom. We show the projection of a slice of thickness ∆z = 50 h−1Mpc and
width ∆x = ∆y = 100 h−1Mpc. Note the first picture which shows how the particles are evolving from
the initially homogeneous distribution on the grid.



50 | 7.3. Identification of Gravitationally Bound Objects - The Halo Finder

Finally, time integration of the force uses a quasi-symplectic leapfrog scheme with adaptive
timesteps.

Boundary Conditions

Cosmological simulations are usually carried out for a cubic domain of space. Conceptually
this domain is cut from the surrounding Universe and one must somehow define the boundary
conditions. The common solution to this problem is to impose periodic boundary conditions

δ(x, y + L, z) = δ(x, y , z), (7.2)

and equivalently for the other directions. With this assumption the Universe is considered as
being composed of an infinite number of simulation volumes, glued at their faces.
When we calculate correlation functions and power spectra from the simulation data periodic
boundary conditions have to be considered as well. Owing to this fact, we have to reorganise
the box before doing the radial averages for ξ(r) according to the scheme drawn in Figure 7.2.

Figure 7.2: Two dimensional scheme of the calculation of the correlation function on the grid. The
correlation around the origin of the dark gray field can only be calculated for r ≤ L/2. We have to
consider the periodic boundary conditions and shift the four dark gray subboxes to their corresponding
light gray positions.

7.3 Identification of Gravitationally Bound Objects - The
Halo Finder

When the evolution of the density field under gravity is finished, we want to investigate the
clustering of the dark matter. We already noted that the haloes are a fundamental building
block of the large scale structure, leading to the problem of their identification in the dark
matter density field. The results of the spherical top-hat collapse model imply that a halo
should be a bound dark matter clump of overdensity δ ≈ 180 for the Einstein-de Sitter case.
There are two main methods that are used for the identification of haloes in the N-body
simulations: The so called spherical overdensity halo finder [Lacey & Cole, 1994] tries to
localise all peaks in the density field and associates all particles in a sphere with mean density
180 times the background density to the halo.
The Friends-of-Friends FoF halo finder [Davis et al. , 1985] is based on the definition of a
linking length h. In a first step all particles with separation less than h are identified as friends.
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Then a halo is defined as the set of particles that are connected by at least one friendship, i. e.
which are friends-of-friends. The linking length has to be carefully chosen in order to identify
all structures exceeding a certain threshold ρ. In a simulation with average particle mass Mp a
sphere of radius

h = 3

√
2Mp

4/3πρ̄
, (7.3)

which is situated in a region with density exceeding ρ will contain on average two or more
particles. In turn, in regions exceeding ρ, particles will be typically closer than h and will hence
be linked by the FoF algorithm. Another important parameter for the FoF halo finder is the
minimum number of particles Nmin per halo. This number is used to reject spurious haloes that
are formed by particles not belonging to a gravitationally bound object. Thus with a sufficiently
high Nmin, one will be able to reject all of those spurious objects.
The big advantage of the FoF halo finder, is that it can identify the full triaxial halo profile
without imposing a spherical profile. But there are also some shortcomings of the FoF halo
finder. The most serious ones are the junction of nearby haloes and the poor distinction of
small mass haloes from the background noise.
One possibility to obtain a more robust estimate for the actual halo parameters is to iteratively
remove unbound particles. This is done by calculating the particle’s potential energy in the
gravitational field produced by the other particles of the assumed halo. Then this energy is
compared to the particle’s kinetic energy. If there are particles with positive total energy then
they are considered as unbound and removed.
The dark matter haloes used for this work were identified using the B-FoF algorithm kindly
provided by Volker Springel, where the linking length was set to 0.2 times the mean interparti-
cle spacing. The minimum particle number per halo was set to Nmin = 30, hence the lightest
haloes have a mass of 1.65× 1013 h−1M�.

7.4 Grid Based Analysis I - Basic Principles

As we saw in §4 the correlation function and power spectrum are given by integrals over a
continuous density field. In the N-body simulations the dark matter density field is however
sampled by a finite number of tracer particles. We have to account for the finite sampling by
translating the definitions for the Fourier transforms. The overdensity in k-space is given by a
sum over the tracer particles at positions ri

δ̂d(k) =
1

Np

Np∑
i=1

exp [ik · ri ]− δD(k). (7.4)

When we calculate the power spectrum of the discrete tracers, the answer will be different
from the exact answer for a continuous field. A bit of algebra reveals〈

|δ(k)|2
〉

=
〈∣∣δd(k)

∣∣2〉+
1

N
, (7.5)

where the additional term is the shot noise [Jing, 2005].
We want to calculate clustering statistics of a vast amount of points in space, making direct
summation techniques a bit tedious. So our approach is to interpolate the particles on a cubic
mesh and use well developed Fast Fourier Transformations (FFTs) to calculate the spectra. We
consider a cubic mesh with spacing ∆r = L

Nc
. Here L denotes the box length (L = 1500 h−1Mpc

in our case) and Nc denotes the number of grid cells per dimension.
The FFT can be described by the following conventions for the discrete Fourier transforms

δ(xi) =

N3
c∑

j=1

exp [−ikj · xi ]δ̂(kj), (7.6)
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δ(kj) =
1

N3
c

N3
c∑

i=1

exp [ikj · xi ]δ̂(xi), (7.7)

where the k-modes are integer multiples of the fundamental mode k0 = 2π/L and all sums run
over all grid cells. The Kronecker-Delta on the grid is consequently given by

δKkl =
1

N3
c

N3
c∑

j=1

exp [ikj · (xk − xl)]. (7.8)

By Nyquist theorem we are not able to resolve modes above the Nyquist wavenumber

kNy =
π

L
Nc, (7.9)

which is equivalent to a minimum resolution of two grid cells. But this is only an upper boundary
for the scales at which we can trust the FFT results. In fact there are artefacts caused by
convolution and alias (finite sampling) effects that become important already at lower scales.
As a first step the Np particles under consideration1 are assigned to the cubical mesh. The
density at the mesh position xi can be expressed as a convolution of the assignment filter with
the particle field n(r) =

∑Np
j=1 δ

D(r − rj)

n(xi) =

∫
d3rn(r)W (r − xi) =

Np∑
j=1

W (rj − xi). (7.10)

We use the nearest gridpoint (NGP) or cloud-in-cell (CIC) mass assignment schemes
[Hockney & Eastwood, 1988] with window functions

WCIC(x − xi) =

{
1− |x−xi |∆r , if |x − xi | ≤ ∆r

0, otherwise
(7.11)

WNGP(x − xi) =

{
1, if |x − xi | ≤ ∆r

2

0, otherwise
(7.12)

The Fourier transform of the density field (7.7) can then be computed using the publicly avail-
able FFTW routines. The convolution with the window function of the NGP or CIC assignment
in real space, leads to a multiplication with the Fourier transformed window in Fourier space.
We could thus correct for the convolution by dividing out the Fourier transform of the NGP or
CIC window function respectively

δck =
δk

Ŵ (k)
, (7.13)

where

ŴCIC(k) =
∏

i=1,2,3

sin
(
πki

2kNy

)
(
πki

2kNy

)
2

, ŴNGP(k) =
∏

i=1,2,3

sin
(
πki

2kNy

)
(
πki

2kNy

)
 . (7.14)

A more carefull analysis of [Jing, 2005] reveals that this simple correction scheme is not valid
for a field sampled by discrete tracers. In this case the real power spectrum is convolved with
the assignment window and iterative schemes have to be used for the recovery of the power
spectrum. These corrections are not yet implemented in the code and thus we decide not to
use any correction.
Often the analysis of gravitational clustering is carried out in Fourier space. In this case
the power spectrum, the clustering strength for a mode of wavenumber k , is the quantity of
most interest. From the Fourier-modes on the grid, one can calculate the absolute value and

1Here particles refers to DM particles, galaxies and haloes equivalently.
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perform a radial averaging of modes in a thin shell around k to obtain an estimator for the
power spectrum P (k) =

〈
|δk |2

〉
.

P (k) =
L3

C (ki ∈ [k − dk, k + dk ])

∑
|ki |∈[k−dk,k+dk]

P (ki). (7.15)

Here C denotes the number of cells within a bin in k .
We are however interested in a clustering analysis in real space. So why should we calculate
the Fourier transformed density field? As we saw in §4, power spectrum P (k) = |δ̂k|2 and
correlation function ξ(r) are related by a three dimensional Fourier transform. We will now
show that a similar relation is true for the density fields on the grid. To do so, we first write
down the definition of the correlation function on the grid, where the spatial average translates
to an average over all grid cells

ξ(ri) = 〈δ(x)δ(x + ri)〉x =
1

N3
c

N3
c∑
j

δ(xj)δ(ri + xj). (7.16)

This relation can be rewritten using the Fourier transformation (7.6) twice

ξ(ri) =
1

N3
c

N3
c∑
m

δ(xm)δ(ri + xm) (7.17)

=
1

N3
c

N3
c∑
m


N3
c∑
j

exp [−ikj · xm]δ(kj)




N3
c∑
l

exp [ikl · (xm + ri)]δ†(kl)

(7.18)

=
1

N3
c

N3
c∑
m

N3
c∑
j,l

exp [ikl · ri ] exp [ixm · (kl − kj)]δ(kj)δ
†(kl) (7.19)

=

N3
c∑
j

exp [ikj · ri ]δ(kj)δ
†(kj). (7.20)

For the last equality we used the Delta function (7.4). We see that the three dimensional
correlation function ξ(ri) on the grid can be obtained by calculating a Fourier transform (7.6)
of δ†(kj)δ(kj). Hence, we first calculate the the absolute value δ†(kj)δ(kj) for each mode on
the grid and then use the inverse FFT to calculate ξ(ri). For this procedure the assumption of
spherical symmetry of the correlation function is not required, which allows us to study redshift
space distortions. Finally, averaging in radial bins provides an estimator for ξ(r).
We already noted that the FFT technique is limited to scales larger than the grid size r > ∆r .
Consequently small scales can only be resolved if one increases the number of grid cells. In
§7.6 we will show how this can be circumvented.

7.5 Projected Correlation Functions

Even if there is a spectroscopic redshift measurement, the radial distance as inferred from
Hubbles law is obscured by the peculiar motions of the galaxies within their clusters and the
large scale flows towards overdensities in the large scale structure. It is very difficult to account
for all these effects and a perfect reconstruction of the real space correlation from the measured
redshift space correlation is infeasible in practice. What we however can do is to integrate
the correlation along the line of sight, i. e. count all particles that are within a cylindrical
shell around a certain galaxy. This quantity has the advantage, that integrating along the
line of sight over a sufficiently long distance can average out the distortions. Calculated for
dark matter–galaxy pairs, the projected galaxy-matter cross-correlation, is furthermore closely
related to gravitational lensing.
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For a given radially averaged correlation function ξ(r) the projected correlation is given by an
integral along the line of sight

w(R) =

∫ χmax

−χmax

ξ(
√
R2 + χ2)dχ (7.21)

= 2

∫ √R2+χ2
max

R

ξ(x)
x√

x2 − R2
dx. (7.22)

Here we used isotropy and symmetry of the correlation to rewrite the boundaries. In practice
we spline-fit the measured correlation function ξ(ri) and numerically integrate the spline fitted
function.
If ξ(r) follows a power law ξ(r) = (r/r0)−γ , then the above integral can be calculated for
χmax →∞

w(R) = r0

(
r

r0

)1−γ
Γ (1/2)Γ (γ/2− 1/2)

Γ (γ/2)
. (7.23)

We see that for a power law correlation the projection follows a power law too, but with a
shallower slope.
Another possibility to calculate w(R) is to consider the full three dimensional correlation func-
tion ξ(r) and integrate it along the line of sight

w(R) =

∫ χmax

−χmax

ξ(x, y , χ)dχ. (7.24)

We use this method when we calculate the projections from the simulation data, since the
above method uses the full information about the distribution of the particles and isotropy is
not required. Using our FFT method we obtain a gridded correlation function ξ(xi , yj , zk) and
from it we can calculate

w(xi , yj) =

kmax∑
k=−kmax

ξ(xi , yj , zk)∆z, (7.25)

where kmax is chosen to satisfy zkmax = χmax. The above result can then be averaged over a
circular annulus to yield an estimate for w(Rs) in a radial bin

w(Rs , Rs+1) =
1

C
(
Rs <

√
x2
i + y2

j < Rs+1

) ∑
(i ,j):Rs<

√
x2
i +y2

j <Rs+1

w(xi , yj). (7.26)

Here we used C to denote the total number of grid cells with radii between the bin boundaries.
This procedure is especially useful if we want to estimate projected quantities in redshift space,
where the integration of the redshift space monopole of the correlation function as in Equation
(7.22) would not lead to the correct answer.
Finally we shall also require ∆w(Rs , Rs+1), this can be obtained by first computing

w̄(Rs) =
1

C
(√

x2
i + y2

j < Rs

) ∑
(i ,j):
√
x2
i +y2

j <Rs

w(xi , yj). (7.27)

This is however only the value at the bin boundary. In fact we would have to average w̄(R)

over the bin (Rs , Rs+1) to obtain the quantity corresponding to w(Rs , Rs+1). Numerically
this would require us to measure w̄(R) for a number of radii within a bin and sum over the
appropriately weighted contributions. For the sake of speed we will choose another approach.
Assuming a shallow slope we can approximate w̄(R) by a straight line

w̄(R) = w̄(Rs) +
w̄(Rs+1)− w̄(Rs)

Rs+1 − Rs
(R − Rs) ∀R ∈ (Rs , Rs+1). (7.28)

The average is then given by

w̄(Rs , Rs+1) =
2

R2
s+1 − R2

s

∫ Rs+1

Rs

R′dR′w̄(R′) (7.29)
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=w̄(Rs) +
1

3
[w̄(Rs+1)− w̄(Rs)]

2R3
s+1 − 3RsR

2
s+1 + R3

s

(Rs+1 + Rs)(Rs+1 − Rs)2
. (7.30)

Finally we can calculate the bin value for ∆Σ

∆Σ(Rs , Rs+1) = ρ̄
[
w̄(Rs , Rs+1)− w(Rs , Rs+1)

]
. (7.31)

We discussed extensively how the excess surface mass density can be derived from the cross-
correlation function and its projection. Especially in terms of lensing one might want to go the
reverse way and calculate the projected correlation function wgm from the measured ∆Σgm. As
a first step we differentiate (6.23) w. r. t. R

∆Σ′(R) = −
2

R

[
2

R2

∫ R

0

dR̃R̃w(R̃)− w(R)

]
− w ′(R) (7.32)

= −
2

R
∆Σ(R)− w ′(R). (7.33)

We obtain an equation that relates ∆Σ(R) and its radial derivative to the derivative of w(R).
Integration of this relation from a fiducial radius R0 to R yields

w(R) =

∫ R

R0

w ′(R̃)dR̃ + w(R0) (7.34)

= −
∫ R

R0

{
2

R̃
∆Σ(R̃) + ∆Σ′(R̃)

}
dR̃ + w(R0). (7.35)

Hence this method determines the projected correlation function up to the amplitude w(R0). In
principle w can then be used to calculate ξ(r) using an Abel integral equation. All this reasoning
assumed that we have perfect knowledge about ∆Σ(R) and its derivative. In practice one has
to measure ∆Σ in relatively coarse bins to get sufficient signal-to-noise, but even in this case
the bin entries will be noisy. An integration of this noisy signal and the even noisier derivative
will obscure the result in Equation (7.35). So we conclude that there is not much hope to
obtain useful results by this inversion method. It should be much more efficient to confront
measured excess surface mass densities directly with the theoretical prediction.

7.6 Grid Based Analysis II - Density Superposition

The grid based clustering analysis described in §7.4 has the problem that its resolution is limited
to two grid spacings. Increasing the number of cells per dimension helps to obtain a higher
resolution, but with the cost of grid sizes growing by the third power of the refinement. Since it
is our goal to resolve the clustering down to rmin ≈ 0.1 h−1Mpc this would require a FFT with
Nc = 150003. In the following we will describe a technique that we have developed to estimate
small scale power spectra and correlation functions from cosmological simulations using Fourier
transforms. This technique was first introduced by [Jenkins et al. , 1998, Smith et al. , 2003].
To become familiar with the method we consider a one dimensional grid G with N cells and
length L. Furthermore, we assume that a density field on x ∈ (0, L) has been assigned to the
grid points using one of the mentioned assignment schemes. We now partition the fine grid G
using a coarse grid G̃ with M grid cells as shown in Figure 7.3.

Figure 7.3: One dimensional grid partitioned into M coarse grid cells indexed by j .

The density at an arbitrary point xl of G can then be written as

δ(xl) = δ

(
xm + j

L

M

)
, (7.36)
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where xm is the position of the particle within the j-th coarse mesh cell. Inspired by our previous
notes on the grid based analysis, we will now perform a FT of the density on above introduced
mesh

δ̂(ks) =
1

N

N−1∑
l=0

exp [iksxl ]δ(xl). (7.37)

We may now split the sum into one over all the coarse-mesh-cells j ∈ [0,M − 1] and one over
the cell positions within the first coarse-mesh-cell xm ∈ [0, L/M].

δ̂(ks) =
1

N

NM−1∑
m=0

M−1∑
j=0

exp

[
iks

(
xm + j

L

M

)]
δ

(
xm + j

L

M

)
(7.38)

=
1

N

NM−1∑
m=0

exp [iksxm]

M−1∑
j=0

exp

[
iks j

L

M

]
δ

(
xm + j

L

M

)
. (7.39)

Here we introduced NM := N/M to denote the number of fine mesh cells within one coarse
mesh cell. If we now choose our fundamental mode for the FT as

k0 = M
2π

L
⇒ ks = sk0, (7.40)

the exponential exp [ikjL/M] in (7.39) vanishes, and by defining δ̃(xl) :=
∑

j δ(xl + jL/M) we
can write

δ̂(ks) =
1

N

NM−1∑
m=0

exp [iksxm]δ̃(xm). (7.41)

This means that we have to perform a FT for the NM cells of the first coarse grid cell and
obtain the correct density field for the modes δ̂(ks).
If we wanted to increase the range of correlation functions or power spectra obtained using the
FFT techniques described in §7.4, we would have to increase the number of cells per dimension
by a factor M, which consequently would increase the size of the arrays by a factor M3 in the
3-d case. This can easily lead to large arrays and FFTs. Instead of performing a N3 FFT we
could take the box, partition it using a coarse grid with M cells per dimension and then put a
reasonable Fourier grid of dimension NM = N/M on each of the coarse grid cells. By summing
up the contributions of all corresponding points in the coarse grid cells and performing the FFT
for the summed subgrid (7.41), we obtain an estimate for the high k , small scale modes with
a reasonable amount of operations. Compared to a M times larger grid we loose the modes

ks = sR
2π

L
R = 1 . . .M − 1, s = 0 . . . NM − 1, (7.42)

equivalently we are considering only each M-th mode.
The correlation function can now be obtained by transforming the absolute value of the modes
back to real space

ξ̃(xq) =

NM−1∑
s=0

exp [−iksxq]δ̂(ks)δ̂
†(ks) (7.43)

=
1

N2

NM−1∑
s,l ,m=0

exp [iks(xl − xq − xm)]δ̃(xl)δ̃(xm) (7.44)

=
1

N

NM−1∑
m=0

δ̃(xm + xq)δ̃(xm), (7.45)

where xq ∈ (0, L/M) and we introduced ξ̃ to account for the fact that this result is obtained on
the grid G̃ with NM cells. The first equality follows from the correspondence of power spectrum
and correlation function and in the second line we plugged in (7.41) twice. The last equality
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then follows from the Kronecker Delta emerging from the sum over s. The above expression
can be recast if we use the definition of δ̃

ξ̃(xq) =
1

N

NM−1∑
m=0

M−1∑
g,j=0

δ(xq + xm + jL/M)δ(xm + gL/M) (7.46)

=
1

N

NM−1∑
m=0

M−1∑
j=0

δ(xq + xm + jL/M)δ(xm + jL/M)+ (7.47)

1

N

NM−1∑
m=0

M−1∑
j 6=g=0

δ(xq + xm + jL/M)δ(xm + gL/M) (7.48)

=
1

N

N−1∑
m=0

δ(xq + xm)δ(xm) +
1

N

NM−1∑
m=0

M−1∑
g 6=j=0

δ
(
xq + xm + (j − g)L/M

)
δ(xm) (7.49)

=ξ(xq) +
1

N

NM−1∑
m=0

M−1∑
j=1

(M − j)
[
δ
(
xq + xm + jL/M

)
+ δ
(
xq + xm − jL/M

)]
δ(xm)

(7.50)

=ξ(xq) +
1

N

NM−1∑
m=0

M−1∑
j=1

(M − j)
[
δ(xq + xm + jL/M) + δ

(
xq + xm + (M − j)L/M)

]
δ
(
xm
)

(7.51)

=ξ(xq) +

M−1∑
j=1

M

N

NM−1∑
m=0

δ
(
xq + xm + jL/M

)
δ
(
xm
)

(7.52)

=ξ(xq) +

M−1∑
j=1

ξM
(
xq + jL/M

)
= ξ(xq) + ξcorr(xq) (7.53)

In the second line we split the double sum over g, j into equal and unequal pairs and used
(7.36) to obtain to the third line. The second term in (7.49) is obtained from a shift of the
coordinate frame. In (7.50) we re-summed the double sum over the unequal pairs i , g and in
(7.51) we substitute M − j → j after having shifted the density by a full period L. Here ξM is
used to denote a correlation, in which the averaging is done only over one coarse box. In the
last line we see that the result is the desired correlation function on G plus a correction term
arising from the neglected modes. Exact calculation of the correction term leads to the same
computational cost as calculating the exact correlation on the grid G. The correction term can
be estimated assuming that the average over one cell of the coarse grid G̃ is equivalent to an
average over the full grid G: ξM ≈ ξ.
The three dimensional case is a straightforward generalisation of the above reasoning and using
the notation j = jxex + jyey + jzez finally yields

ξ̃(xq) =ξ(xq) +

M−1∑
jx ,jy ,jz=1

ξM
(
xq + jL/M

)
(7.54)

=ξ(xq) + ξcorr(xq) (7.55)

The correlation is a monotonically decreasing function of r and hence we need to estimate the
magnitude of the argument of ξM

(
xq + jL/M

)
from below in order to find an upper bound for

ξcorr(r).

x2
q + j2

(
L

M

)2

− 2|xq ||j|
L

M
≤
∣∣∣∣xq + j

L

M

∣∣∣∣2 (7.56)

Finally we are interested in the angular average of the correlation function and thus set r = |xq |.

ξcorr(r) ≤
M−1∑

jx ,jy ,jz=1

ξ

(√
r2 + |j|2 (L/M)2 − 2r |j|L/M

)
. (7.57)
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If we assume a power law correlation ξ(r) = αr−γ , we can estimate the effect of the correction.

ξcorr(r)

ξ(r)
≤

M−1∑
jx ,jy ,jz=1

(
1 +
|j|2

r2

(
L

M

)2

− 2
|j|
r

L

M

)−γ/2

. (7.58)

In Figure 7.4 we evaluate Equation (7.58) for three different refinements2. Finally we can con-
clude, that the correlation function obtained in this fashion will be close to the true correlation
function only over a certain range of scales. At the small scale end it is limited by the mesh
resolution and the corresponding Nyquist wavelength (see Table 7.2), whereas at the large
scale end it is limited by the correction term in Equation 7.57.
We calculate the actual correlation functions using a set of different coarse grid sizes and
then piece them together at the transition points estimated from the range of validity. If not
otherwise stated results are obtained using a Nc = 512 FFT grid.

refinement M 1 3 9 12 20 30
λNy [ h−1Mpc] 5.86 1.95 0.65 0.48 0.19 0.1

box length LM [ h−1Mpc] 1500 500 167 125 75 50

Table 7.2: Resolution of the correlations from FFT when using only each Mth Fourier mode.
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Figure 7.4: Upper bound on the correction term ξcorr for a power law correlation function with slope
γ = −1.8. We show the ratio of correction and real correlation function for three different refinements
assuming a box with width L = 1500 h−1Mpc and a FFT with NM = 5123 cells. The vertical dashed
lines show the corresponding Nyquist wavelengths λNy = 2∆r . The black dashed line is for M = 1.

2The matter correlation in our simulations is well approximated by γ ≈ −1.9 on scales 1 h−1Mpc ≤ r ≤
50 h−1Mpc.
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7.7 Maximum Likelihood Parameter Estimation

We are using data with correlated bin entries. When fitting to these data we hence need to
consider the covariance matrix of the bin entries xi

Ci j = cov(xi , xj) = 〈xixj 〉 − 〈xi 〉 〈xj〉 . (7.59)

The diagonal entries of this matrix contain the variance of the bin entries σ2
i , whereas the

off-diagonal elements describe the correlation of different bin entries. If we assume that the
data follow a multi variate Gaussian distribution, the probability density function of the data x

given the mean µ and covariance matrix C reads as

f (x,µ) =
1

(2π)p/2 detC1/2
exp

[
−

1

2
(x− µ)′C−1(x− µ)

]
. (7.60)

Our model is described by a set of parameters θ, which only indirectly influence the mean
vector µ. In our inference we would like to calculate the conditional probability of our model
given the data P (θ|x). Using Bayes theorem, this can be related to the conditional probability
of the data given the model

P (θ|x) =
P (x|θ)P (θ)

P (x)
, (7.61)

where the a posteriori probability of the data P (x) and the prior probability of the model P (θ)

are unknown.
For constant priors, the inference depends only on ratios of the likelihood function

L(θ|x) := αP (x|θ). (7.62)

The goal of the inference procedure is to maximise the likelihood. For convenience one often
works with the natural logarithm of the likelihood and denotes this quantity log-likelihood. For
the case of the multivariate Gaussian distribution (7.60) we would have to maximise

− lnL(θ|x) = ln (2π)p/2 detC +
1

2
(x− µ)′C−1(x− µ). (7.63)

The first summand is a constant and the second one is a quantity known as the χ2

χ2 = (x− µ)′C−1(x− µ). (7.64)

If we are now interested in the probability distribution for a certain parameter we have to
marginalise over all other parameters. The probability of the data x given one set of parameters
θ1 is given by the sum

P (x|θ1) =
∑
θ2

P (x |θ1,θ2)P (θ2|θ1), (7.65)

the last expression under the sum is the probability of parameter set two given a certain value
for parameter set one. But as the prior probability of the parameters is unknown, we assume
it to be constant and factor it out as a normalisation constant. Again using Bayes law, we can
infer the probability of θ1 given the data

P (θ1|x) =
P (θ1)P (θ2|θ1)

P (x)

∑
θ2

P (x|θ1,θ2). (7.66)

Again we have no knowledge about the prefactor so that we use it for normalisation

P (θ1|x) =

∑
θ2
P (x|θ1,θ2)∑

θ1

∑
θ2
P (x|θ1,θ2)

=

∑
θ2
P (x|θ1,θ2)∑
θ P (x|θ)

. (7.67)
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The χ2 distribution

Having performed a χ2 minimisation as described above, we will have to check how well our
model can describe the data. This question can be answered using the χ2-test (see e. g.
[Barlow, 1997]). One expects the deviation of the fit from the data to be around the size
of the error of the corresponding measurement leading to a total χ2 equal to the number
of measured points. However, if we minimise χ2 we have to subtract the number of free
parameters from the number of measurements to obtain the number of degrees of freedom
Ndof. The probability distribution for χ2 is given by

f (χ2, Ndof) =
2−Ndof/2

Γ (Ndof/2)
χNdof−2 exp

[
−χ2/2

]
. (7.68)

The important quantity is the probability to get a χ2 larger than the actual one

P (χ2, Ndof) =

∫ ∞
χ2

f (χ̃2, Ndof)dχ̃
2. (7.69)

The bare χ2 values resulting from a fitting procedure are usually normalized with the number
of degrees of freedom χ̃2 = χ2/Ndof. We will drop the tilde and quote only the reduced χ2.

7.8 Generation of LRG Galaxy Catalogues

We are creating galaxy catalogues using the identified haloes from the zHORIZON-simulations.
These simulations provide only the dark matter distribution and we can identify virialised dark
matter clumps as haloes using a FoF halo finder as described above. If we now want to predict
observable quantities we need to understand how certain galaxy types populate the dark matter
haloes. The halo occupation distribution (HOD) provides a solution to this problem. This model
assumes that there is a relation between halo mass and galaxy luminosity, i.e. certain classes
of galaxies live preferentially in haloes of a typical mass. More specifically, the halo occupation
distribution assumes that the probability of finding a halo that hosts Ntot galaxies depends
mainly on the halo mass M. Thus we can write the probability distribution as P (Ntot|M).
If we want to use this model to put galaxies into our simulations we have to answer the following
two questions:

1. How many galaxies will reside in a halo of a certain mass?

2. How are they distributed within the halo?

Detailed studies of haloes and subhaloes in N-body simulations [Kravtsov et al. , 2004] suggest
a division of galaxies into central and satellite galaxies. A popular and reasonable assumption
is that there is a central galaxy, which sits at the halo centre of mass and additional satellite
galaxies which surround it. The common assumption is that the central galaxy is in general
more luminous than the satellites in the same halo.
The mass dependence of the galaxy number has been parametrised in different ways in the
literature for threshold samples. For instance [Reid & Spergel, 2008] study LRGs using the
Counts in Cylinders statistic and use the following parametrisation to populate their haloes34

Ncen(M) =
1

2
erfc

[
−

lnM/Mcut

σ

]
, Nsat(M) =

(
M −Mmin

M1

)α
, (7.70)

where

erf(x) =
2√
π

∫ x

−∞
exp

[
−t2

]
dt erfc(x) = 1− erf(x). (7.71)

3They use a spherical overdensity instead of a FoF halo finder to define their haloes
4We switched the parameters Mcut and Mmin to avoid confusion with our model.
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Furthermore [Padmanabhan et al. , 2008] use a similar model when they study the galaxy-
quasar cross-correlation.

Ncen(M) =
1

2
erfc

[
−

lnM/Mcut√
2σ

]
, Nsat(M) =

(
M − κMcut

M1

)α
(7.72)

We will adopt the first parametrisation for our luminosity-threshold sample and an adapted
version of it for the luminosity-bin sample. The adaption is necessary because there is a con-
ceptional difference between luminosity-threshold and luminosity-bin samples. A threshold in
luminosity can be translated into a threshold in mass by introducing a smoothing of the step
to account for the scatter in the luminosity-mass relationship as shown in the above equations.
This procedure becomes a bit more involved if one tries to model luminosity bins. Here we
in fact have to model an upturn and a decay of the galaxy number, i. e. we will end up with
a window. The properties of this window are not clear ab initio, especially the assumption of
a symmetric window, which we will consider, is ad hoc and driven by simplicity rather than
physical arguments.

7.8.1 General Considerations

The first galaxy put into a halo is assumed to be a central galaxy and is located on the position
of the dark matter particle closest to the halo centre of mass. Its velocity is set to the mean
halo velocity. Further galaxies are put on randomly chosen dark matter particles, where we
take care to avoid two galaxies on the same dark matter particle. The modelling of the mean
number of satellites differs for the two LRG samples and will be described in detail below.
However, for both samples we draw the actual number of satellites from a Poisson distribution

P (Nsat = k | 〈Nsat〉) =
〈Nsat〉k

k!
exp [−〈Nsat〉]. (7.73)

The assumption of a Poisson distribution is again based on subhalo counts in high resolution
simulations [Kravtsov et al. , 2004]. In such simulations, which resolve both the haloes and
their substructure, satellite galaxies can be associated with the subhaloes. Our simulations
lack sufficient resolution to do so, and we instead place them on randomly chosen dark matter
particles. This approach has the advantage that we can assign the dark matter particles
velocity as the galaxy peculiar velocity, which will prove beneficial when we investigate the
effect of redshift space distortions. Furthermore an assumption of a density profile for the
haloes is not required and we can sample from their full triaxial dark matter distribution. This
in turn assumes that the galaxies are distributed around the halo centre like the dark matter.
In the catalogues we save information about the host halo mass and whether the galaxy is a
satellite or not, which might be useful for further projects.
The random numbers are generated using the Fortran implemented random number generator
and are reinitialised using system time at each generation run. Poisson distributed random
numbers are generated using a rejection method for 〈Nsat〉 < 60 and are drawn from a Gaussian
distribution using the Box-Muller transform for higher 〈Nsat〉.

7.8.2 The HOD Adaption Algorithm

For the actual fitting procedure we generate a grid of parameters in the ϕ-dimensional param-
eter space spanned by {M1, α,Mmin, σ} and {M1,Mcut,2, α,Mmin, σ}, for the bright and faint
sample respectively5. The spacing for α and σ is linear, whereas for M1, Mmin and Mcut,u we
choose linear spacing in log10. Then we use the list of parameter sets to calculate Mcut,1 or
Mcut for the faint and bright sample respectively by imposing the number density constraint∫

dMn(M) 〈Ntot〉 (M) = n̄meas. (7.74)

5For the meaning of the parameters see subsections about faint and bright sample below.
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This saves computation time and avoids throwing away most of the galaxy catalogues due to
wrong number densities. For the mass function we use a spline fit to the mass function as
measured from the simulation, since there are differences at the percent level compared to the
Sheth & Tormen description (see Figure 5.1 on Page 34).
This integration over the fitted mass function does not guarantee that we will obtain the
actual measured number density for our galaxy catalogue, since the actual density is subject to
Poisson noise. Therefore we include the number density in our χ2, which is then a combination
of contributions from the galaxy-galaxy lensing, the galaxy-galaxy clustering and the number
densities

χ2
n̄ =

(
n̄sim − n̄obs
σobs

)2

,

χ2
w = (wsim −wobs)C

−1
w,obs (wsim −wobs)

′ ,

χ2
∆Σ = (∆Σsim −∆Σobs)C

−1
∆Σ,obs (∆Σsim −∆Σobs)

′ ,

χ2
tot = χ2

n̄ + χ2
w + χ2

∆Σ. (7.75)

Here we used vectors ∆Σ and w to account for the fact that we have the data in a binned
form and hence wi = w(ri) where i is the bin number.
If we considered ε parameter realisations per dimension in parameter space, we would have
to evaluate εϕ points in total. So a scanning of parameter space becomes a computationally
demanding task, which has to be tackled using parallelisation strategies. Therefore the list of
parameters is split into subsamples, which are then distributed to different nodes on a computer
cluster. We used the ZBOX2 cluster of the University of Zurich, which provides 4 processors
per node with a shared memory of 8 GB.
Figure 7.5 gives a schematic overview of the algorithm that we use to generate the galaxy
catalogues for the Nsample points in parameter space. For each point in parameter space we
generate Nreal = 4 galaxy catalogues on the same simulation and average the calculated statis-
tics over the four realisations to remove part of the scatter, intrinsic to the HOD procedure.
To speed these processes up we generate the catalogues using OPENMP parallelisation. We loop
over the Ngroups haloes and check whether to put a central or not. If there is a central we put it
onto the central dark matter particle and draw the actual number of satellites from the Poisson
distribution. The satellites are then distributed on the Ndm dark matter particles associated
with the halo.
The generation of the galaxy catalogues is relatively memory consuming, since the dark matter
particle positions have to be kept in memory for this process. When all catalogues are gener-
ated, we deallocate the dark matter positions and load the gridded dark matter distribution for
three different coarse gridsM = 3, M = 10 andM = 20 to memory. Then we start to evaluate
the projected galaxy matter cross correlation and the projected galaxy galaxy autocorrelation.
The routines for normalisation of the gridded density field, for calculating the complex product
and finally, for calculation of the statistics involve sums over all grid cells and are therefore
OPENMP parallelised too. In the end we calculate χ2 as described in Equation (7.75) and store
the number densities and χgg, χΣ and χn̄. Using four processors, which have all access to
shared memory storage we can generate the four catalogues in about 170 s. The evaluation
of the catalogues takes another 270 s, which in total gives 440 s. This means for say α = 5

parameters per dimension we need 76 h of computing time.
Further speedup could only be achieved by distributing subsamples of the model list to differ-
ent nodes of a computer cluster. To our perception there is no further possibility for speedup
of the evaluation side. In terms of the catalogue generation a remarkable speedup could be
achieved if we did not have to sample from the dark matter distribution. Assuming a profile
for the satellite distribution around the halo centre, one would only need the halo positions
and masses to determine the galaxy positions. A common assumption in the literature is to
distribute the galaxies according to a spherical NFW profile. For the velocities of the satellites
one would then have to sample from a velocity distribution. Often one assumes as Gaussian
with dispersion σv , which for the NFW profile was computed by [Lokas & Mamon, 2001]. This
method could be further improved if one accounted for the triaxiality of the halo. This triaxial
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Figure 7.5: Program scheme for the generation of a luminosity threshold galaxy catalogue and Nsample

sets of HOD parameters. We use Nreal to denote the number of galaxy catalogues per model over
which we average and Ngroup to denote the number of haloes identified in the simulation.

mass distribution can be obtained from the inertia tensor of the halo. The major axes can then
be used to map the spherical NFW profile to an ellipsoidal NFW profile.

7.8.3 Modelling of the Bright LRG Sample

The number of central LRGs is either one or zero, i. e. it follows a Bernoulli distribution with
success probability p

P (Ncen = 1) = p, P (Ncen = 1) = 1− p, (7.76)

where the expectation value of Ncen equals the success probability 〈Ncen〉 = p. In a first step
we decide whether a halo hosts a central galaxy, where the mean number of central galaxies
follows a step, smoothed with an error function

p = 〈Ncen〉 =
1

2
erfc

[
−

lnM/Mcut√
2σ

]
. (7.77)

This galaxy is put to the centre of the halo and is assigned the peculiar velocity of its host
halo as described above. The bright subsample of the SDSS LRGs is a luminosity-threshold
sample and hence it is reasonable to assume that the satellites brighter than the threshold will
only live in haloes which already host a central galaxy with luminosity exceeding this threshold.
This suggests that the probability of Nsat = k satellite galaxies in a halo can be written as

P (Nsat = k) =P (Nsat = k |Ncen = 1)P (Ncen = 1) + P (Nsat = k |Ncen = 0)P (Ncen = 0)

(7.78)

=P (Nsat = k |Ncen = 1)P (Ncen = 1) (7.79)

=P (Nsat = k |Ncen = 1) 〈Ncen〉 . (7.80)

In the first line we used the law of total probability and in the second line we made use of
P (Nsat = k |Ncen = 0) = 0. So it remains to model the conditional probability for k satellites
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given that there is already a central. We will model this number with a Poisson distribution
with mean

〈Nsat〉c (M) =


(
M−Mmin
M1

)α
, if M > Mmin ∧ Ncen 6= 0

0, otherwise
(7.81)

Here we introduced the subscript c to account for the fact that this is the conditional expec-
tation value, i. e. the expectation of the satellite number calculated for the haloes hosting a
central. The total expectation can now be written as

〈Ntot〉 (M) = 〈Nsat〉 (M) + 〈Ncen〉 (M) (7.82)

=
∑
k

kP (Nsat = k) + 〈Ncen〉 (M) (7.83)

= 〈Ncen〉 (M)

[∑
k

kP (Nsat = k |Ncen = 1) + 1

]
(7.84)

= 〈Ncen〉 (M) [〈Nsat〉c (M) + 1] . (7.85)

The above introduced model has five free parameters {M1,Mcut,Mmin, α, σ}, which can be
varied to adapt the model to the data. The shape of this distribution is shown in Figure 7.6.
When fitting to the data we first calculateMcut for each point in the four dimensional parameter
space spanned by {M1, α, σ,Mmin} demanding for the right abundance.

10
13

10
14

10
15

0

1

2

3

4

5

6

M [h−1 M
sun

]

<
N

>

 

 
total
satellites
centrals

Figure 7.6: Development of the galaxy number with changing mass for the luminosity threshold sample.
We show the number of central galaxies (blue dashed), satellite galaxies (red dashed) and the total
number of galaxies (black solid). Note that this does not reflect the real distribution we found for our
sample.

7.8.4 Modelling of the Faint LRG Sample

The faint subsample of the LRGs is a luminosity-bin rather than a threshold sample. Hence the
problem of translation of luminosity-bin into a mass-bin arises. Furthermore we have to drop
the requirement that there has to be a central galaxy from the luminosity bin in order to host a
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satellite from the same bin. This is due to the fact, that a satellite from this fainter luminosity
bin may live in a halo that already hosts a central from the bright sample. In order to simplify
our analysis we are not using the galaxy catalogues for the bright sample to generate the
satellites, but rather consider centrals and satellites as two independent samples such that the
probability for the satellites is independent of the probability for the centrals 〈Nsat〉c = 〈Nsat〉.
Hence the total number of galaxies in a halo can be written as

p = 〈Ntot〉 (M) = 〈Ncen〉 (M) + 〈Nsat〉 (M). (7.86)

In the first step we consider the central galaxies. The window is modeled as a symmetric,
smoothed box shown in Figure 7.7

〈Ncen〉 =
1

4
erfc

[
−

lnM/Mcut,1√
2σ

]
erfc

[
lnM/Mcut,2√

2σ

]
, (7.87)

where Mcut,1 < Mcut,2 and we have Mcut,2 as an additional free parameter. The functional
form ensures 0 ≤ 〈Ncen〉 ≤ 1 and is sufficiently variable for our modelling. The satellite number
is drawn from a Poisson distribution with mean given by (7.81). Again we calculate Mcut,1

for each point in the five dimensional parameter space spanned by {M1,Mcut,2,Mmin, α, σ},
demanding for the right number density according to Equation (7.74).
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Figure 7.7: Development of the galaxy number with changing mass for the luminosity bin sample.
We show the number of central galaxies (blue dashed), satellite galaxies (red dashed) and the total
number of galaxies (black solid).

7.9 Redshift Space Distortions

So far we performed our analysis of correlation functions in real space, where the three dimen-
sional position of galaxies and dark matter is known. Concerning observations such a treatment
is a bit idealistic, angular positions on the sky can be easily measured, whereas the determi-
nation of the distance to a galaxy is a bit more involved. We will in the following discuss the
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effects arising in redshift surveys such as the SDSS.
Considering only Hubble’s law

u = Hr, (7.88)

it seems to be evident to use the recessional velocity u of a galaxy, or equivalently the redshift
z of its spectral lines, as a distance measure

χ ≈
z

H0
z � 1 (7.89)

Three dimensional positions obtained in this fashion are termed redshift space positions. How-
ever, the assumption of perfect Hubble law distance–velocity relation is distorted by the peculiar
velocities v of galaxies with respect to the Hubble flow. These peculiar velocities arise from
the gravitational instability and hence the apparent clustering in redshift space is different from
the real space clustering. However, large galaxy surveys, such as SDSS and 2dFGRS use the
redshift as a proxy for distance. Consequently, the statistics derived from these surveys are
different from the real space predictions. In this context it is useful to develop an understanding
of the consequences of working in redshift rather than real space.
There are essentially two effects, which influence the shape of power spectrum and correlation
function measured in redshift space.

large scales On large scales galaxies that fall into clusters lead to a squashing of the correla-
tion, i. e. an enhancement of the power spectrum for modes parallel to the line of sight.
Galaxies between us and the cluster have an enhanced velocity and seem to be further
away than they actually are, whereas galaxies situated at the opposite side of the cluster
have a velocity smaller than the Hubble velocity and are hence moved toward us.

small scales On small scales the virial motion or velocity dispersion of galaxies within their
host halo leads to an elongation of the cluster along the line of sight. This elongation
effect leads to a suppression of the clustering along the line of sight, and is termed the
finger-of-god effect.

Altogether these effects give rise to a positive quadrupole anisotropy on large scales, which
approaches zero at intermediate scales and becomes negative at small scales.
To make the issue more easily tractable we will impose the plane-parallel approximation,
which states that the redshift axis has a fixed direction (which we take as the x-axis) and we
consider only far away regions that subtend a small angle on the sky. Consequently, we can
assume the distortions to occur all along this axis. Furthermore, we will neglect the velocity
dispersion since it should be subdominant on large and intermediate scales. A more detailed
discussion of this limit is presented in [Scoccimarro, 2004].
The relation between redshift space position rs and real space position r reads as

rs = r +
x̂ · v
H

x̂. (7.90)

Here x̂ is the unit vector in x-direction. We will now follow an simplified but analytically
tractable argument of [Kaiser, 1987]. As a starting point to calculate the relation between
real and redshift space clustering we use the fact that the number of objects is not changed
under the distortion.

ns(rs)d
3rs = n(r)d3r ⇒ ns(rs) = n(r)J (7.91)

Here we introduced the Jacobian of the transformation J. As we saw in Equation (7.90) the
distortions affect only the radial position and leave the angular coordinates unaffected

J =

∣∣∣∣ d3r

d3rs

∣∣∣∣ =
dr

drs

r2

r2
s

=

(
1 +

∂

∂x

[
v · x̂
H0

])−1(
1 +

v · x̂
H0x

)−2

(7.92)

Now Kaiser recognised that large scale modes (corresponding to k ≈ x−1, where x is the survey
dimension) will be sparsely sampled and hence the derivative kv/H is more important than the
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correction v/Hx by a factor kx � 1 for almost all modes. Linearising above equation and
dividing by the mean density we arrive at

δs = δ −
∂

∂x

[
v · x̂
H

]
. (7.93)

We can now derive the power spectrum of the redshift space overdensity by performing a
Fourier transform

δ̂s(k) = δ(k)− i
∫
d3r exp [−ik · r]f (Ωm)

∂

∂x

∫
d3k ′ exp [ik′ · x]δ(k)

k′ · x̂
k ′2

. (7.94)

In the last equation we used the result (3.24) from linear theory v(k) = iaHf (Ωm)δ(k)/k ,
where f (Ωm) = d lnD1/d ln a and D1 is the growth factor. Hence the real and redshift space
density fields are related as

δ̂m,s(k) = δ̂m,r(k)
[
1 + f (Ωm)µ2

]
, (7.95)

where µ = k · x̂/k . From this it is only a small step to the redshift space power spectrum

Ps(k) = P (k)
[
1 + f (Ωm)µ2

]2
. (7.96)

However, if we want to consider galaxies rather than the underlying dark matter, we have to
introduce the bias b. This affects only the first term, since the second is an velocity effect
and velocities depend on the dark matter clustering rather than the galaxy clustering. So the
relation for the galaxy power spectrum is

Pgg,s(k) = P (k)b2
[
1 + βµ2

]2
, (7.97)

where β = f (Ωm)/b.
Using above description for the redshift space power spectrum we can now derive the linear
theory prediction for the correlation function

ξ(r, ν) =
V

2π2

∫ 1

−1

dµ

∫ ∞
0

dkk2Plin(k) exp [ik · x]
[
1 + βµ2

]2
(7.98)

= α0ξ0(r)L0(ν) + α2ξ2(r)L2(ν) + α4ξ4(r)L4(ν), (7.99)

where ν is the angle between r and the line of sight ν = x̂ · r/r = x/r , Ll are the Legendre

polynomials and the ji are the spherical Bessel functions (ji(x) =
√

1
2x Ji(x)). The prefactors

introduced in the above equation are defined by

α0 =1 +
2

3
β +

1

5
β2, (7.100)

α2 =
4

3
β +

4

7
β2, (7.101)

α4 =
8

35
β2. (7.102)

The real space multipoles can be calculated from

ξi(r) =
V

2π2

∫ ∞
0

dkk2Plin(k)ji(kr). (7.103)

Above result is obtained using the plane wave expansion

exp [ik · x] =

∞∑
l=0

(2l + 1)i l jl(kr)Ll(µ)Ll(ν), (7.104)

where ν and µ are the polar angles of r and k, respectively. The orthogonality of the Legendre
polynomials helps to integrate out the polar angle in Fourier space.∫ 1

−1

dµLl(µ)Lm(µ) =
2

2 + l
δlm (7.105)
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A contour plot of the redshift space correlation function is shown in Figure 7.8. We are now
interested in the projected correlation function w (s)

gg (R) and have to perform an integration of
(7.99) along the line of sight.

w (s)
gg (R) =

∫ χm

−χm
ξ(r, ν)dχ = (7.106)

= 2

∫ χm

0

ξ
(√

χ2 + R2, ν
)
ν= χ√

χ2+R2

dχ (7.107)

= 2

∫ χm

0

{
α0ξ0

(√
χ2 + R2

)
L0(ν) + α2ξ2

(√
χ2 + R2

)
L2(ν)

+α4ξ4

(√
χ2 + R2

)
L4(ν)

}
ν= χ√

χ2+R2

dχ (7.108)

Above result can be used to calculate the linear theory predictions for the projected correlation
functions in redshift space.
In the simulations we are using comoving coordinates and measure positions in units of h−1Mpc.
Hence in the distant observer approximation redshift space displacements can be assigned by

rs = r +
v · ẑ
100

. (7.109)
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Figure 7.8: Contour plot of the 10-based logarithm of the galaxy autocorrelation function calculated
using Kaiser’s approximation. Horizontal Rσ axis is transverse to the line of sight Rπ. The plot was
generated assuming a bias of b = 2.2



CHAPTER 8

Results

After having laid down the basic theory and having explained our methodology we will now
proceed to describe our findings. We start with the discussion of our new FFT based algorithm
for the calculation of correlation functions. Then we will continue with the HOD fitting:
Starting with an investigation of the influence of the HOD parameters on the spectra, we
will pursue with the discussion of the best fit HOD for the bright and faint LRG sample.
These best fit models are used afterwards to investigate the behaviour of the cross-correlation
coefficient and to develop a new technique for the recovery of the dark matter correlation
function. Subsequently, we will quantify the influence of redshift space distortions on projected
correlation functions. Finally we will comment on a different scheme for the galaxy distribution
and the effect of spatial resolution on our results.

8.1 Correlation Functions from the Grid Based Analysis

In Figure 8.1 we compare the matter-matter autocorrelation function ξmm obtained with a
1024-cell FFT method to the result obtained with a tree based direct summation method.
We show both correlation functions and their fractional difference, as well as the galaxy-
galaxy autocorrelation function ξgg and the galaxy-matter cross-correlation function ξgm for
a LRG catalogue. The matter autocorrelation is chosen for this comparison, since the large
number of dark matter particles provides the lowest noise on the correlation function and
thus facilitates the extraction of the differences of the two calculation techniques. The FFT
based correlation agrees with the direct summation result to better than 3% on scales between
1 h−1Mpc ≤ r ≤ 60 h−1Mpc. The fractional difference becomes less well constrained above
that scale. In this context it is important to note that the dark matter correlation calculated
by the direct summation method uses only a subset of the full dark matter distribution. One
randomly samples from the dark matter particles to make the computations faster. The results
we compare to are obtained from a sampling of Ñp = 1× 106, corresponding to a dilution by
a factor Ñp/Np ≈ 1/470. This relatively coarse subsampling is possible since the variance of
the power spectrum and correlation function is affected by shot noise, which is proportional to
1/Ñp. Around the BAO scale there are fluctuations on the 5% level in the direct summation
code that arise from the sampling. Furthermore we note that the FFT based method shows
unphysical artefacts when one approaches the Nyquist wavelength. These effects become
especially pronounced if the sample under consideration has a low number density. We conclude
that besides of the first promising results, there are still some systematic effects, about which
we have to gain a better understanding.
The FFT based method is trivially parallelisable and the computation time for the correlation
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function is dominated by the calculation of an effective FFT scheme and the mass assignment.
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Figure 8.1: Top panel: Comparison of the correlation functions obtained from our FFT method and
with the direct summation code. Coloured squares show the matter autocorrelation (red), galaxy-
matter cross-correlation (blue) and galaxy autocorrelation (green), whereas the dashed line shows the
matter correlation from the direct summation. Note that our method is exact on the 3% level over
a wide range of scales. The vertical dashed lines are included to show the radial scale at which we
stack the correlations obtained with different resolution FFTs. We show correlations from an ensemble
average over eight simulations. Bottom panel: Fractional difference of the two measurements and
associated standard deviation over the eight simulation volumes. Our method provides an efficient
method to probe the clustering around the BAO scale at r ≈ 105 h−1Mpc.

8.2 Generation of LRG Galaxy Catalogues

We decided to use an algorithm based on a grid of parameters to obtain a HOD that can repro-
duce the galaxy-galaxy clustering, the galaxy-galaxy lensing and the abundance of the sample.
Therefore we generate ε = 5 different values for each of the ϕ parameters to be estimated.
This gives a total of 5ϕ models, for which galaxy catalogues have to be generated and the
clustering statistics have to be calculated. The spacing of the parameters is chosen linear for
σ,α and logarithmic for M1,Mcut,Mmin. In Table 8.1 we quote the limits of the parameter
space. For the actual fitting we used the full covariance matrix provided by Mandelbaum et
al. and an error of 10% on the abundance n̄. In total we have 55 data points and 4/5 free
parameters, i.e. the number of degrees of freedom amounts to Ndof = 51/50 for the bright
and faint sample respectively.
Table 8.2 shows the results for the best fit HOD parameters together with the resulting χ2.
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bright faint
M1 5 80 8 80

Mcut,2 – – 3 20

Mmin 2 60 3 40

σ 0.1 2.2 0.2 2

α 0.1 2.0 0.05 1.5

Table 8.1: Limits on the grid of HOD parameters used for the fitting, the spacing is linear for α, σ
and linear in log10 for the masses. The masses are given in units of 1013 h−1M�.

χ2 n̄ M1 Mcut,l Mcut,u α σ Mmin model
bright 4.47 4.78 40 17.8 — 1.05 1.68 4.6 434

bright-d 1.24 4.73 10 17.8 — 0.1 1.68 25.6 144

faint 8.02 9.36 45 5 12.4 0.4 1.55 5.7 2284

Table 8.2: Best fit parameters for the faint and bright sample obtained with the full covariance matrix.
For comparison we also quote the HOD for a fit of the bright sample using the diagonal errors only.
The number densities are in units of 1 × 10−5 h3 Mpc−3, masses in units of 1013 h−1M�. Note that
we quote the reduced χ2.

8.2.1 Influence of the HOD Parameters on the Projected Correlations

In Figure 8.2 we examine the effect of the variation of single HOD parameters on the shape
of the projected correlation function for the bright LRG sample. We show the correlation of a
fiducial model in green, for lower value of the parameter under consideration in red and for a
higher value in blue.
The top left panel of Figure 8.2 shows variation of M1. As expected, lower M1 leads to more
satellites and hence to a strong increase of the small scale clustering and the overall bias, since
the bright LRG satellites live in high mass, high bias haloes. A higher value for M1 causes less
satellites and hence smaller clustering on small scales. The variation of Mcut is shown in the
top right panel of Figure 8.2. The cutoff mass influences on the one hand the total number
of centrals, but on the other hand includes or excludes intermediate mass haloes. A high Mcut

(blue) emphasises the influence of the higher biased, high mass haloes and hence leads to an
increased overall clustering amplitude. The satellite slope α is varied in the centre left panel of
Figure 8.2, it influences the number of satellites as it either leads to a high number of satellites
in the rare high mass haloes or to intermediate satellite numbers for the more abundant low
mass haloes. A lower value (red) increases the satellite number and thus the small scale
clustering. Changing α by a factor of 2 has no effect on the overall clustering amplitude, since
this parameter influences only the slope of the satellite fraction. The centre right panel of
Figure 8.2 shows a variation of Mmin, this is a cutoff and normalisation scale for the satellites
and hence influences predominantly the small scale clustering. For high Mmin (blue) there will
be almost no satellites and hence the small scale correlation breaks down. Finally, the bottom
panel of Figure 8.2 shows the variation of σ, a parameter that affects the smoothness of the
step described by Mcut. A high σ (blue) makes the step smoother and includes more low bias,
low mass haloes, leading to a lower overall clustering amplitude.
Figure 8.3 repeats the above discussion for the lensing signal ∆Σ. We see that its shape is
almost robust to the change of the parameters and follows approximately a power law. It is
however strongly affected in its amplitude by Mcut and σ as we can see in the top right and
bottom panel of Figure 8.3. A higher Mcut includes more high mass, high bias haloes and thus
increases the overall amplitude of the clustering, raising the surface mass density in the peaks.
A lower value for the smoothing factor σ emphasises the influence of low bias, low mass haloes
and thus decreases the overall clustering amplitude. The top left panel of Figure 8.3 shows
that the high satellite number, resulting from a low M1 can also increase the amplitude of the
lensing signal.
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Figure 8.2: Sensitivity of the projected galaxy clustering on variation of single parameters of the five
parameter HOD with respect to a fiducial model. Red, green and blue are used for lower, central and
larger value of the corresponding parameter. Light gray line shows observed gg correlation for the
bright LRG subsample. For interpretation see text.
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Figure 8.3: Sensitivity of lensing signal ∆Σ on variation of single parameters of the five parameter
HOD with respect to a fiducial model. Red, green and blue are used for lower, central and larger value
of the corresponding parameter. Light gray line shows measured excess surface mass density for the
bright LRG subsample. For interpretation see text.
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8.2.2 Best Fit HOD: Bright sample

Before we present the actual best fit results, we mention a few comments concerning the ob-
served data. First we note that there is a pronounced feature in the ∆Σ measurement at scales
of 6 − 9 h−1Mpc (see right panel of Figure 8.4). One might argue that this feature could be
explained in terms of the halo model, as the transition from the one halo to the two halo term.
However we expect this transition to appear on smaller scales. We therefore consider that this
feature is likely due to either a measurement error or the errorbars are underestimated. We
were not able to reproduce this feature with any of the tested models in that pronounced form.
Furthermore, we note that even the clustering data are poorly constrained with fractional errors
exceeding 40% at smallest and largest scales and only at the 10% level in between.
Figure 8.4 shows the best fit results for ∆Σ and wgg and the corresponding HOD parameters
are quoted in Table 8.2. By eye the prediction seems to be a good fit to the data, but the
χ2
tot = 4.47 obtained from the covariance matrix is still rather high, giving P (χ2 > 4.47) ≈ 0

according to (7.69). Interestingly the χ2 inferred from 615 models changes approximately by
a factor of 4 if we use the diagonal errors instead of the full covariance matrix. At the same
time the inferred best-fit parameters change remarkably (see the second row of Table 8.2).
In principle the covariance matrix and the mean should be predicted from the theory. Since an
external covariance estimator based on the cosmic variance can not account for all the system-
atic and measurement errors, we instead use the covariance matrix obtained from the measured
correlation and lensing. We therefore consider that the large difference in χ2 is likely to be
due to wrong off-diagonal entries. A further issue arises from the noise in the matrix, which
might affect the inversion. However, the mathematically correct way is to use the covariance
matrix and hence this is the way we choose to obtain our best fit values. For the discussion of
bootstrap covariance estimators we refer the reader to §9 and [Norberg et al. , 2008].
A closer look at the left panel of Figure 8.4 reveals that the galaxy-galaxy correlation as mea-
sured from the simulation gets noisy at the smallest scales corresponding to the one halo
regime, which in the halo model is governed by central-satellite or satellite-satellite pairs. This
scatter is reasonable from the small satellite fraction of only 4.5%.
We measure the bias under the assumption of scale independence on linear scales 16 h−1Mpc ≤
r ≤ 97 h−1Mpc that are not yet obscured by the BAO and obtain consistent results of
b = 2.20± 0.03 and b = 2.21± 0.02 from ξgg and ξgm respectively.

8.2.3 Best Fit HOD: Faint sample

Again we start with some general observations. The lensing signal for the faint sample in the
right panel of Figure 8.5 roughly follows a power law, with a little dip at the largest scales.
This sample has a number density of n̄faint = 8 × 10−5 h3Mpc−3 = 2n̄bright, leading to much
smaller fractional errors for the galaxy-clustering.
In Table 8.2 we show the parameters of the best fit HOD that yield χ2

tot = 8.02. We used 5

free parameters for the fitting procedure and thus considered 3125 points in parameter space.
Figure 8.5 shows the clustering and lensing signal of of the best fit model together with the
observed spectra. The predicted clustering in the left panel of Figure 8.5 compares rather well
with the observed clustering except for the outermost bins. In this context we should mention,
that these bins are strongly correlated, i.e. a larger value for one of the bins would increase the
others as well. Despite this apparent agreement between theory and observation one should
be cautious with the interpretation of log-log plots. The right panel of Figure 8.5 shows that
the observed and predicted lensing signal compare very well except for the pre last and the first
bin.
We measured the bias for scales 16 h−1Mpc ≤ r ≤ 97 h−1Mpc and obtain b = 1.97 ± 0.03

and b = 1.97 ± 0.02 from auto- and cross-correlation, respectively. The satellite fraction is
10% and explains the better constrained small scale clustering.
We furthermore note the coincidence of the upper cutoff for Mcut,2 of the faint sample and
the lower cutoff Mcut of the bright sample in Table 8.2. This coincidence was obtained from
two independent fitting procedures and strengthens the fitting results. On the other hand we
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Figure 8.4: Left panel: Measured SDSS galaxy autocorrelation for the bright LRG subsample from
[Mandelbaum et al. , 2006a] with diagonal errors (blue). Best fit HOD model for one simulation
averaged over four catalogues shown with corresponding standard deviations (red). Right panel: Cor-
responding excess surface mass density measured from galaxy-galaxy lensing (blue line) with diagonal
errors. Results from best fit HOD model are shown with standard deviations (red).
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Figure 8.5: Left panel: Measured SDSS galaxy autocorrelation for the faint LRG subsample
from [Mandelbaum et al. , 2006a] with diagonal errors (blue). Best fit HOD model for one sim-
ulation averaged over four catalogues shown with corresponding standard deviations (red).Right
panel:Corresponding excess surface mass density measured from galaxy-galaxy lensing (blue line) with
diagonal errors. Results from best fit HOD model are shown with standard deviations (red).

have to admit that the χ2 = 8.02 implies that our model is not a very good description of the
data giving P (χ2 > 8.02) ≈ 0 according to (7.69). We hence consider that our modelling of
the window is probably not a good description of the luminosity bin sample.
To finish this section, we have to add a remark on the smallest bin of the lensing signal
calculated from the simulations in the right panels of Figures 8.4 and 8.5. As we will discuss
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below in §8.5, our calculation method artificially truncates the correlation on small scales and
hence we miss signal for Σ̄. This leads to wrong predictions concerning the lensing signal and
the first bin should be excluded from the total χ2. We will however keep the obtained best fit
model, since the total χ2 is dominated by the autocorrelation. Furthermore, the gravitational
force softening length of 70 h−1 kpc becomes relevant at the scales of the lowest bin and
higher resolution simulations are required to probe these scales.

8.3 Cross-Correlation Coefficient

We introduced the cross-correlation coefficient of of the correlation function for two tracer
populations A and B as

rcc =
ξAB√
ξAAξBB

. (8.1)

In this section we will start to look at the cross-correlation coefficient of the haloes as funda-
mental building blocks of the large scale structure. Afterwards we will turn towards the cross-
correlation coefficient of the galaxies and the matter and examine how the cross-correlation is
affected by the additional small scale clustering. Finally we will consider the cross-correlation
coefficient of the excess surface mass density, since this is the quantity available from obser-
vations.

8.3.1 Haloes

As shown in the top panel of Figure 8.6 the cross-correlation coefficient calculated from ξ(r)

drops below unity at about 10 h−1Mpc for haloes due to stochasticity that is introduced by the
nonlinear gravitational clustering. Interestingly this behaviour is independent of the halo mass
down to the cluster radius. It can be modeled using perturbation theory as

rcc(r) ≈ 1− b2
2

ξlin(r)

4
, (8.2)

where b2 is the second order bias [McDonald, 2006]. The second order bias is a free parameter
and we chose it in order to reproduce the shape of the cross-correlation. In the top panel of
Figure 8.6 we see that the decrease of rcc towards small scales is well reproduced by perturbation
theory.
We already noted that cross-correlation coefficient of the galaxies and the matter can be used
to infer to the correlation function or power spectrum of the underlying dark matter density
field. It is a key issue in cosmology to reconstruct this quantity since it contains a wealth of
information that can be used to determine neutrino mass or cosmological parameters.
It is however not possible to measure ξgm directly. The best thing we can do is to measure
its projection along the line of sight by galaxy-galaxy lensing. Projections are easier to obtain
also for the clustering, since projection helps to remedy redshift space distortions without
assumptions about the nonlinear clustering. This leads us to look at the cross-correlation
coefficients calculated from projected statistics and we show the corresponding results for
the haloes in Figure 8.6. Interestingly the cross-correlation coefficient first decreases with
decreasing radius to turn up at the cluster radius as a consequence of the halo exclusion.

8.3.2 Galaxies: Projected Correlation

We will now turn to towards the galaxies. The following discussion will be based on the LRG
catalogues of the best fit models described above. If the cross-correlation coefficient was
unity down to the nonlinear scales (for example given by a typical halo radius R0) we could
reconstruct the matter correlation from measurable quantities such as wgg(R) and ∆Σ(R). To
examine these effects we use our galaxy catalogues as described in §8.2. In a first step we
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Figure 8.6: Top panel: Cross-correlation coefficient between haloes and matter calculated from ξ(r)

for six different halo mass bins. Remarkably r is close to one on intermediate scales but drops below
unity around 10 h−1Mpc. Furthermore the signal becomes noisy on scales around the baryon acoustic
oscillations. Data are obtained from averaging over eight simulations and using a 1024 cell FFT.
For comparison we overplot the perturbation theory prediction (8.2) for b2 = 0.52, chosen to fit the
shape of the cross-correlation function.Bottom panel: Cross correlation coefficient between haloes
and matter calculated from w(R) for six equal signal-to-noise halo mass bins. Data are obtained from
averaging over eight simulations and using a 1024 cell FFT for redshift z = 0.

consider the projected correlation function w to calculate

r (w)(R) =
wgm(R)√

wgg(R)wmm(R)
. (8.3)

Results are shown in Figure 8.7 for the bright subsample and in Figure 8.8 for the faint subsam-
ple. For these figures we perform a line of sight integration of the non-linear ξ(r), averaged over
eight simulation volumes. Both plots show that r (w)

cc calculated from the projected correlation
is close to unity down to 5 h−1Mpc. There are however differences between the full sample
(solid lines) and the sample, where all the satellite LRGs are removed (dashed line). These
differences are more pronounced for the faint sample, which is understandable from the fact
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that the faint sample has a satellite fraction twice as high as the bright sample. It is interesting
to compare Figure 8.7 with Figure 8.6. For the central sample we see a minimum and an
upturn in r as we go to smaller and smaller scales that is also present in the highest mass halo
bin. This behaviour can be explained from the fact that the central LRGs trace the dark matter
haloes above a certain mass threshold and for the central LRGs the halo exclusion applies as
well. Inclusion of the satellites makes the dip less pronounced and the slope a bit shallower
because the central-satellite and satellite-satellite pairs increase the clustering on scales below
the virial radius.
But since wgm is not observable we have to switch to quantities that are in fact observable.
Hence we consider ∆Σ(R) as defined in (6.23)1

∆Σ(R) = Σ̄(R)−Σ(R) (8.4)

and calculate the cross correlation coefficient of ∆Σgm,∆Σgg and ∆Σmm. The bottom panels
of Figure 8.9 and Figure 8.10 show the result as a black solid line - it is different from unity
and strongly scale dependent for both samples. That was to be expected, since ∆Σ contains
information from the non-linear scales dominated by the halo profile rather than linear corre-
lation functions. In principle one should be able to subtract these non-linear contributions to
∆Σ out.

8.3.3 Galaxies: Compensated Surface Mass Density

We remove the excess surface mass density within radius R0, whose value we will choose in
order to move the resulting cross-correlation as close to unity as possible

Γ (R) :=∆Σ(R)−
R2

0

R2
∆Σ(R0), (8.5)

=
2

R2

∫ R

R0

w(r ′)r ′dr ′ − w(R) + w(R0)
R2

0

R2
. (8.6)

We see that Γ (R) depends only on correlations on scales larger than the cutoff radius R0 and
that its calculation can be easily performed once the lensing has been measured. For sure the
resulting quantity can only be used on scales larger than the cutoff scale. We will now calculate
the cross-correlation coefficient from this compensated lensing signal

r (Γ )(R) =
Γgm(R)√

Γgg(R)Γmm(R)
. (8.7)

In the bottom panel of Figure 8.9 we show the cross-correlation coefficient of Γ for the bright
sample with different cutoff radii. We calculated the quantities shown in this plot by numerical
integration of the non-linear correlation functions measured in the simulations. The corre-
sponding cross-correlation for the faint sample is plotted in the bottom panel of Figure 8.10.
We can conclude that the subtraction of central contributions as described above is an effective
way to recast cross-correlation coefficient back to unity. Due to the smaller cluster radii of the
faint sample, R0 = 3 h−1Mpc is already an overcompensation, whereas for the bright sample it
gives the best result. As these figures were calculated using the non-linear correlation function
averaged over eight simulations, we show the corresponding plots for the excess surface mass
density measured directly in the simulations in Figure 8.11.
In real data the quantity ∆Σ(R0) is not known, just bin averaged lensing signals can be mea-
sured. Thus we explore, how the scatter in the bin with centre at R0 affects the resulting
cross-correlation coefficient. We show ∆Σ corrected by the lensing signal in the bin around R0

as the blue crosses in the top left panel of Figure 8.11 and note that the standard deviation

1Note that in the following we will use Σ as a symbol to denote the projected surface number density and omit
multiplication with the mass density as this factor is irrelevant for the cross-correlation factor. Furthermore
we calculate Σ for all three correlations (mm, gm, gg) and not only for gm as in the usual definition from
lensing.
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over the eight simulations is not negligible. So we investigate whether the result improves if
we use a spline fit to the lensing signal over the range 1.5 h−1Mpc ≤ R ≤ 3.5 h−1Mpc for the
determination of ∆Σ(R0). We show the resulting corrected lensing signal as red crosses with
errorbars in the top left panel of Figure 8.11. Both the scatter and the mean are in accordance
with the bin subtraction. The bottom left panel of Figure 8.11 repeats above investigation for
the faint sample. In this plot the scatter is lower due to the higher number density and the
value of R0 is chosen smaller to account for the smaller cluster radii.
We saw both from non-linear theory and the simulation measurement that the compensation
method can effectively restore a cross-correlation coefficient close to unity. Now we have to
test, how well the matter autocorrelation can then be obtained under the assumption r ≡ 1

Γmm(R) =
Γ 2
gm(R)

Γgg(R)
, R > Rmin, (8.8)

here Rmin is the radius at which cross-correlation coefficient starts to deviate from unity.
Unfortunately we have no theoretical prediction for Rmin and have to settle for using a value
of Rmin ≈ 5 h−1Mpc inspired by our numerical studies.
Similarly to our argumentation in §7.5 one could in principle invert Γmm to obtain the projected
matter autocorrelation

w(R) =

∫ R

R0

w ′(R̃)dR̃ + w(R0) (8.9)

= −
∫ R

R0

{
2

R̃
Γ (R̃) + Γ ′(R̃)

}
dR̃ + w(R0). (8.10)

But since the measured lensing signals are already noisy, an integral over the function and its
derivative will be even more noisy. Calculating Γ (R) from the linear power spectrum and com-
paring it to the results obtained from the measurement should perform better. This procedure
should in fact enable estimates of slope and amplitude of the primordial power spectrum.
In the top right panel of Figure 8.11 we show a reconstructed matter correlation Γmm together
with linear and non-linear theory prediction for the bright sample. There is reasonable agree-
ment between reconstructed and theoretical surface mass density. But there are differences
between the non-linear and linear Γmm if R0 is chosen too small. For the bright sample the
large virial radii imply a rather large R0 to restore cross-correlation coefficient of unity. As a
consequence the linear and non-linear correlation functions at R0 are very close and the lin-
ear prediction for Γmm gives a reasonable fit to the measured quantity. In contrast, for the
faint sample shown in the bottom right panel of figure 8.11 we have to choose R0 somewhat
smaller, since too large R0 will lead to a too strong correction on ∆Σ and consequently to a
cross-correlation coefficient below unity. One can maybe correct for that, using perturbation
theory descriptions of cross correlation coefficient.



80 | 8.3. Cross-Correlation Coefficient

10
0

10
1

10
2

10
3

w
(R

) 
[h

−
1  M

pc
]

 

 
mm
gm
gg

10
0

10
1

0.9

0.95

1

1.05

1.1

r=
w

gm
/(

w
gg

 w
m

m
)1/

2

R [h−1 Mpc]

Figure 8.7: Top panel: Projected autocorrelations for matter, bright galaxies and corresponding cross-
correlation calculated from measured non-linear ξ(r). Dashed lines correspond to a sample where all
the satellites are removed from the catalogue and only the LRG host halo centres contribute to the
signal. Bottom panel: Cross-correlation coefficient of the spectra in the top panel.
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contribute to the signal.
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Figure 8.11: Top left panel: Cross-correlation coefficient for the bright sample calculated from the
lensing signal measured in the simulations. For the red points with errorbars we fitted ∆Σ in the range
1.5 h−1Mpc ≤ R ≤ 3.5 h−1Mpc by a power law and used the resulting function for subtraction of
∆Σ(R0 = 3.3 h−1Mpc). Errorbars show standard deviation over 8 simulations. For the blue points
we took ∆Σ of the bin containing R0 for the subtraction. Top right panel: Reconstructed non-linear
matter surface mass density Γmm (red with errors estimated from the standard deviation between eight
simulations). Solid black line shows linear theory Γ (lin)

mm and dashed black line shows Γ (nl)
mm calculated

from the measured non-linear correlation. Bottom left panel: Cross-correlation coefficient for the faint
sample calculated from the measured projection. For red points with errorbars we fitted ∆Σ in the
range 1.5 h−1Mpc ≤ R ≤ 3.5 h−1Mpc by a power law and used the resulting function for subtraction of
∆Σ(R0 = 1.6 h−1Mpc). Errorbars show standard deviation over 8 simulations. For the blue points we
took ∆Σ of the bin containing R0 for the subtraction. Bottom right panel: Reconstructed non-linear
matter surface mass density Γmm (red with errors estimated from the standard deviation between eight
simulations). Solid black line shows linear theory Γ (lin)

mm and dashed black line shows Γ (nl)
mm calculated

from the measured non-linear correlation.
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8.4 Redshift Space Distortions on Projected Correlation
Functions

The common assumption is that one can remedy redshift space distortions by integrating along
the line of sight. However, there is no consensus on how far one has to integrate to reduce the
distortions to a desired level. We address this question both with Kaiser’s analytic expression
for the power spectrum and with simulation results. In Figure 8.13 we show the ratio of the
redshift space to real space galaxy autocorrelation functions, where the theoretical prediction
was calculated using Equation (7.108). It is evident from this plot that, even for integration of
χmax = 100 h−1Mpc on each side, there are deviations on the 10% level. Furthermore we see
that on these large scales the Kaiser based linear theory prediction is a good description of the
data. The excess of the signal in redshift space compared to real space can maybe explain the
differences between our HOD and the observed clustering in the outermost bins of Figure 8.4
and Figure 8.5. Unfortunately we did this study only after we finished the fitting so that we
could not correct for this effect. From that we can conclude that the fitting should be better
done in redshift space.
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Figure 8.12: Ratio of the redshift space to real space projected galaxy-galaxy correlation function for
integration lengths χmax = 25, 50, 100 h−1Mpc in blue, red and green respectively. The solid lines show
the linear theory prediction based on Kaiser formula, whereas the points with errorbars are measured.
Kaiser can reproduce the observed ratios very well on scales R ≥ 10 h−1Mpc. We see that even for
100 h−1Mpc integration there are deviations on the 10% level. The results shown here are for the
bright LRG sample an correspond to b = 2.2.

If we want to use the cross-correlation coefficient calculated from lensing and clustering mea-
surements, we are merging two different quantities in terms of integration length. The win-
dow for the lensing is not a top hat in radial distance, but a skew window that essentially
stretches from the lens to the source plane. We will however make the practical assumption
of χmax,gm = 500 h−1Mpc, which ensures that redshift space distortions are not important for
lensing results. In contrast the window for the clustering measurements is relatively shallow
and is taken to be χmax ≈ 50 h−1Mpc for most surveys. Consequently a correction of either
wgm or wgg should be applied. To do so we have to consider the ratio

γ =
wgg,s(R,χmax = 500 h−1Mpc)

wgg,s(R,χmax = 50 h−1Mpc)
≈
wgg,r(R,χmax = 500 h−1Mpc)

wgg,s(R,χmax = 50 h−1Mpc)
, (8.11)

which can then be used to calculate a wgg,s(R,χmax = 500 h−1Mpc) = γwgg,s(R,χmax =

50 h−1Mpc) corresponding to wgm as measured from the lensing. We already saw that the
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Kaiser based linear theory prediction provides a good description of the projected galaxy cluster-
ing on large scales. Hence we evaluate above fraction using linear theory and Kaiser prediction
and show the results in Figure 8.13. For our results on cross-correlation coefficient we use
projections over 50 h−1Mpc both for galaxy-matter and galaxy-galaxy correlation. Integrating
the galaxy-matter cross correlation over 500 h−1Mpc on each side would slow down our cal-
culations tremendously and affect the inferred ∆Σ only on the 1% level in the outermost bin.
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Figure 8.13: Ratio of the redshift space galaxy correlation functions projected over χmax = 500 h−1Mpc
and χmax = 50 h−1Mpc (red solid). This ratio can be broken up in the difference between real and
redshift space (lower black dashed) and the difference due to the integration length (blue dashed).
We also show that the projection over 500 h−1Mpc remedies the redshift space distortions completely
(green dashed line). The red line thus shows the correction one should apply to the clustering mea-
surements with a narrow window, if one wants to compare them to lensing measurements with a much
wider window. The results are based on Kaiser formula for the bright LRG sample and correspond to
b = 2.2.

8.5 Small Scale Truncation

As already noted the excess surface mass density ∆Σ combines information from very small
scales and from larger scales. We know however, that our small scale resolution is limited both
by the finite resolution of the simulation and by the resolution of the FFT method used to
calculate Σ. Therefore we investigate how the shape of the correlation on small scales (which
we are resolving) affects our result on larger scales. To do so we will make the simplifying
assumption that ξ(r) and consequently w(R) can be well approximated by power laws. The
truncation of such a power law in the form

w(R) =


(
R
R0

)α
, for R > b

0, otherwise
(8.12)

leads to the following result for ∆Σ

∆Σ(R) = −
α

α+ 2

(
R

R0

)α
−

2

α+ 2

(
b

R0

)α(
b

R

)2

. (8.13)
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The last term on the rhs is a correction to the pure power law behaviour, which is given by the
first term. We see that for α > −2 there is a supression of the form −1/R2 which will vanish
for R � b. The same argument should apply for more realistic correlation functions. The
halo profiles in N-body simulations are remarkably well described by the NFW profile, which is
a broken power law with slope −1 in the central regions and −3 further out. For scales below
the cluster radius of a halo of given mass M the correlation is given by the density profile.
The total correlation function is a superposition of these profiles appropriately weighted by the
HOD or mass function.
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Figure 8.14: Effect of the truncation of correlation function on small scales. We start from a nonlinear
correlation function ξHALOFIT(r) calculated with HALOFIT based on a CMBFAST transfer function. The
green solid line shows the projected correlation as calculated from ξHALOFIT(r). Then we investigate
how a truncation of ξ(r) as in Equation (8.14) (red) or Σ(R) as in Equation (8.15) (blue) at the
radius marked by the vertical dashed line affects ∆Σ. The dot-dashed lines show the corresponding Σ̄

and the dashed lines show ∆Σ. The black solid line is the linear Σ(R).

In Figure 8.14 we show the results for a numerical study based on a HALOFIT [Smith et al. , 2003]
power spectrum and a cutoff radius b = 0.07 h−1Mpc inspired by the softening length of our
simulations. We show the quantities Σ, Σ̄ and ∆Σ calculated by numerical integration of the
full non-linear correlation function ξHALOFIT(r) as solid, dash-dotted and dashed green lines.
Then we modify ξ(r) as

ξ̃(r) =

{
ξHALOFIT(r), r > b

0, r < b
(8.14)

and then calculate w(R) by numerical integration of ξ̃(R). This results in the solid, dash-
dotted and dashed red lines in Figure 8.14 for Σ, Σ̄ and ∆Σ, respectively. This would be case if
we measured the correlation function from the simulation and then trivially integrated it. For
the calculations presented in the the other sections of this thesis we fit a natural spline to the
correlation function before integrating it along the line of sight and thus artificially continue
the correlation to smaller scales. The missing small scale correlation has no effect on Σ above
b, but leads to a decrease in Σ̄ up to 0.2 h−1Mpc and affects ∆Σ up to 0.5 h−1Mpc. Finally
we should consider the case of a truncated Σ

Σ̃(R) =

{∫ χmax

−χmax
ξHALOFIT(R,χ)dχ, R > b

0, R < b
(8.15)
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The blue solid, dash-dotted and dashed lines in Figure 8.14 show the result - we see that
the truncation of Σ at the scale b ≈ 0.07 h−1Mpc results in a too small ∆Σ that con-
verges to the true value only at R ≈ 0.7 h−1Mpc. The missing amplitude roughly follows the
−1/R2-behaviour predicted in Equation (8.13). The latter case is be the most relevant for the
measurement of the lensing signal from the simulation as there is a lack of pairs closer than the
softening length. Even the direct summation code, which should resolve all pairs down to zero
separation, produces a ∆Σ that peaks at R ≈ 0.8 h−1Mpc and decreases on smaller scales.

8.6 Influence of Satellite Galaxies

As already noted by [Zheng et al. , 2008] there is clear evidence that a fraction of the LRGs has
to be satellites. The small scale clustering amplitude requires pairs closer than the virial radii
of the haloes. As we show in figure 8.15 for the bright sample the galaxy-galaxy clustering and
galaxy-matter correlation show only minor changes on scales above 3 h−1Mpc if we exclude
the satellite galaxies. On smaller scales however, the galaxy-galaxy autocorrelation for the
centrals starts to decay below the correlation of the complete sample. This behaviour is clear
from the halo model, since the galaxies live in haloes of mass exceeding M & 5× 1014 h−1M�
corresponding to cluster radii of r200 & 1 h−1Mpc.2 By definition such haloes should not
overlap and so all the clustering of galaxies on scales smaller than two virial radii must be due
to central-satellite or satellite-satellite pairs. The nonzero value for the small scale clustering
of the centrals comes from galaxies residing in small mass haloes M & 1.2 × 1013 h−1Mpc in
the tail of the smoothed step (7.77), which have radii r200 & 0.8 h−1Mpc.
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Figure 8.15: Left panel: Galaxy autocorrelation function for the bright sample (blue) and the host
halo centres of this sample (green). The solid line is obtained from integrating a spline fitted ξ(r),
whereas points are obtained directly from the projected 3-d correlation ξ(r). Left panel: Galaxy-matter
cross-correlation for the same sample.

8.7 NFW Versus Dark Matter

As mentioned before our standard approach for the distribution of the galaxies in their host
halo is to sample from the dark matter particle distribution. However, this is a computa-
tionally expensive task since both the dark matter particle positions and their velocities have
to be kept in memory. Therefore we explore a distribution according to the NFW profile

2The subscript 200 refers to a halo that has a mean density of 200 times the background density.
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[Navarro et al. , 1996] with concentration parameter

c = 9

[
M

M∗

]−0.13

. (8.16)

As we show in Figure 8.7 the correlation functions obtained for the two approaches differ only on
the percent level for intermediate scales. The small scale behaviour however depends strongly
on the way in which the galaxies are distributed within their host halo. Differences become
also significant at the BAO scale, since this feature depends on the non-linear clustering. We
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Figure 8.16: Top panel: Comparison of the galaxy-galaxy autocorrelation (green) and galaxy-matter
cross-correlation (blue) for galaxies following the dark matter distribution (squares) and distributed
according to a NFW profile around the halo centre (stars). The results are an average over eight
simulation volumes and one galaxy catalogue per simulation. The red stars show matter autocorrelation
and the solid lines show the correlation as calculated with the tree code.Bottom panel: Relative
difference between the galaxy distributions for gg auto-correlation (green) and gm cross-correlation
(blue). Note that the two point function is quite similar for the two profiles except for the nonlinear
scales where the one halo term dominates.

however caution the reader about an overinterpretation of this preliminary results. Firstly a
better modelling of the concentration parameter (8.16) or inclusion of halo triaxiality could
maybe improve the accordance on small scales. Secondly the results, we show in Figure 8.7
are averaged over eight simulations but consider only one galaxy catalogue per simulation. So
the differences can maybe be explained by the scatter of the HOD. Since we so far could not
show the equivalence of the two distribution schemes, we stick to the distribution following the
dark matter particles for the time being.
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8.8 Projected Correlation Functions

We use two different approaches to calculate the projected statistics. The first one is to calcu-
late the radially averaged ξ(r) from the simulation and then perform a line of sight integration
to arrive at w(R). This approach corresponds to a non-linear theory prediction. Second way
is to directly calculate w(R) from the 3-d correlation function ξ(r) using (7.26). The latter is
closer to the observations and more noisy since the number of modes in a circular shell is much
lower than in a spherical shell. Furthermore the calculation of w(R) from radially averaged
correlation includes a spline fit of the data and hence gives a smoothed result.
The reason for the stochasticity of the galaxy catalogues is twofold: Firstly there is the cosmic
variance, which will lead to different results even for the dark matter spectra from simulation
to simulation. This cosmic variance was put into the simulations by generating a realisation
of the random cosmic density field. Secondly there is stochasticity in each realisation of the
galaxy catalogues. The catalogues are generated by sampling from the HOD and thus two cat-
alogues created for the same simulation, but with different random seeds, will lead to different
statistics. We try to eliminate the stochastic fluctuations by first averaging over the statistics
of four catalogues for each simulation and afterwards over eight simulations. If not otherwise
stated, errorbars are standard deviations between results for the eight simulations.



CHAPTER 9

Conclusions

In this last chapter we will return to the objectives of this thesis defined in §1.3 and summarise
our findings. Starting with a discussion of the method used to calculate the correlation func-
tions, we will proceed to the LRG catalogues. The latter are the basis of our findings and are
thus discussed censoriously. The third and most important purpose of this thesis was to inves-
tigate the cross-correlation coefficient of the galaxy-galaxy lensing signal. We will elaborately
discuss the implications of our results and devise an algorithm to confront theoretical predic-
tions for the matter power spectrum with lensing and clustering measurements. To analyse
these measurements one needs to correct properly for systematic effects introduced by redshift
space distortions. Our achievements on this fourth of our objectives should be a warning to
the community not to underestimate these effects. Last but not least we will comment on
some open questions and future prospects for improvements.

9.1 Analysis Techniques

We developed and tested a method to calculate the clustering statistics and their projections in
real and redshift space in a fast and efficient way. This method yields results that deviate only
on the 3% level from an exact direct summation code over a wide range of scales. Our method
could be further improved by finding a robust rule to determine the scales at which the results,
obtained for different coarse mesh sizes, should be stacked. Especially for future simulations
with even higher number of dark matter particles this method wins over direct summation
codes. Particularly for studies of the baryon acoustic oscillation scales r ≈ 100 h−1Mpc, direct
summation codes have to sample from the dark matter distribution, whereas our code can
account for all the particles. This statement is weakened if one only considers the rare tracers
of the density field, such as haloes or galaxies. Being much less abundant, a direct summation
code can give more exact results in a reasonable amount of time.

Problems of the FFT Approach

Further subtleties however arise from the assignment of particles to the grid as was previously
noted by [Jing, 2005, Cui et al. , 2008]. These effects can be categorised as follows:
discreteness The density field is sampled by a finite number of tracer particles leading to a

Poisson shot noise term that adds to the power spectrum.
smoothing The convolution of the density field with the assignment window function artificially

smoothes the density and introduces a multiplication with the Fourier transform of the
window to both the power spectrum and the shot noise.
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aliasing The convolved density field is sampled on a finite number of grid points leading to
alias sums over the window and the power spectrum. Because of this effect a direct
correction as introduced in Equation 7.13 is not possible.

We have not investigated these effects in real space, but presume that implementation of new
assignment kernels and iterative deconvolution could clearly improve the results.

Small Scale Effects

On small scales our resolution is limited by the finite grid size and can lead to spurious correlation
especially for rare tracers, such as galaxies. This problem could be circumvented by either using
a direct summation on small scales or by introducing an analytic continuation with a power
law. In terms of the lensing signal we found coherent results between the direct summation
and our new FFT approach. The FFT method does not resolve the exact clustering below one
or two grid spacings λNy(M = 20) ≈ 0.14 h−1Mpc, but it preserves the total number of pairs
and thus calculates the mean projected surface mass density correctly.

9.2 Generation of LRG Galaxy Catalogues

As a central part of this work we developed an algorithm to create galaxy catalogues for our
simulations that reproduce observed galaxy-galaxy clustering and galaxy-galaxy lensing mea-
surements. This algorithm populates the dark matter haloes and determines the parameters
of the halo occupation distribution by matching the projected clustering statistics to the ob-
servation.

Interpretation of the Results

In our χ2 minimisation we see that the HOD can approximate the observations reasonably well.
This is on the one hand good news, since it tells us that the theory can describe the underlying
dark matter density field sufficiently well and that the galaxy clustering is then mainly influ-
enced by a superposition of halos of different masses, plus some recipe to account for the small
scale distribution of satellites. On the other hand, the best fit models obtained with the full
covariance matrix still yield relatively large χ2, whereas by eye the correlation functions seem
to fit the data.
In this context it is important to recall that the errors were estimated using a bootstrap resam-
pling of the data set. It is not completely clear if these estimates give a reasonable answer, and
if the sample considered by [Mandelbaum et al. , 2006a] is a representative realisation of the
cosmology with enough statistical power to estimate the amount of cosmic variance. This can
be doubted since there are strong features in the lensing signal, especially for the bright sample,
which were not reproduced with any of the models considered in our work. If we despite of
the strong correlations used the diagonal errors only, we would obtain much better χ2. This
fact strengthens our decision to use the full covariance matrix and the need for a theoretical
modelling of the errors on the projected correlation functions. Recently [Smith, 2008] derived
a lower bound for the covariance of the cross-correlation function. This approach could be
further developed towards projected clustering and the lensing signal.
Our HOD fitting method used only one simulation volume with V ≈ 4VSDSS for the parameter
estimation, and thus is subject to cosmic variance. A comparison of best fit values obtained for
different simulations with the same generation prescription showed no significant differences in
the inferred HOD.
The modelling of the scatter in the luminosity-mass relation used in our work, especially the
assumption of a symmetric window for the bin sample, is rather ad hoc and needs bet-
ter justification. In this context our HOD method could be improved by using a physically
motivated conditional luminosity function to obtain a relation between luminosity and mass
[Cacciato et al. , 2008].
The residuals between our best fit model and the measurements might be due to the fact that
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we use the wrong cosmology. Recent data analyses of the WMAP experiment
[Dunkley et al. , 2008, Komatsu et al. , 2008] obtained cosmological parameters that deviate
from the ones used for our simulation especially in the slope of the power spectrum. This
affects the underlying dark matter distribution and hence the clustering of the galaxies.

Comparison to a Similar Study

Comparing to the results of [Reid et al. , 2008] we have to consider that they modeled the full
LRG sample from an earlier data release. We modeled two subsamples separately and obtained
similar values for the upper cutoff mass of the faint and the lower cutoff mass of the bright
sample in Table 8.2. So one could argue that a combination of our two samples should be
comparable to the full sample. Their σlog10 = 0.7 translates to σ = 1.13 in our definition, i.e.
we obtain a higher smoothing of the step. Our low mass cutoff for the faint sample compares
well toMcut = 5.6×1013 h−1M� quoted by [Reid et al. , 2008]. Their satellite normalisation of
M1 = 3.5× 1014 h−1M� is a bit lower than our value but probably compensates the difference
in the satellite slope, for which they obtain α = 1.
This reasoning is not very profound and by no means an alternative to a HOD determination
for the full sample. It just helps to check whether our results are somehow reasonable. In fact
modelling the full sample should lead to better constraints on the HOD parameters due to two
reasons: Firstly the full sample has a higher number density and thus better constrained errors.
Secondly the modelling of a luminosity-threshold sample, such as the full LRG sample, with
a step in mass is physically well motivated in contrast to our modelling of the luminosity-bin
sample.

Sampling of the Parameter Space

Owing to the relatively long calculation time per model, we have only calculated the goodness-
of-fit for a grid of HOD parameters. In all the above discussion we should thus be aware that
the parameter space might have strong gradients leading to very peaked minima, which we
not resolve. Clearly a Markov chain Monte Carlo method would provide tighter constraints
on the parameters, but such a chain needs a large number of points in parameter space until
it converges. We are content with our approximate results, since our primary goal was to
obtain a reasonable galaxy catalogue that can then be used to investigate questions about the
phenomenology of galaxy clustering.
Finally we have to admit that fitting observed galaxy clustering by populating simulations
might be not the most intelligent approach. Other authors successfully modeled the observed
correlation and lensing using the halo model [Cacciato et al. , 2008]. This analytic prescription
provides a much faster way to explore the parameter space and should in fact enable a Markov
chain Monte Carlo method.

9.3 Cross-Correlation Coefficient and Dark Matter Recovery

Finally we used our galaxy catalogues to extract information about the galaxy–dark matter
connection, especially the cross-correlation coefficient.
We developed a method to recover the dark matter clustering from galaxy-galaxy lensing
and galaxy clustering measurements using the constancy of cross-correlation coefficient for a
compensated excess surface density. Through removing the influence from small, non-linear
scales on the excess surface mass density, we were able to construct a function Γ , whose
cross-correlation coefficient is close to unity. While the non-linear matter correlation can be
recovered with high fidelity, the linear correlation is only recovered at large scales or by strong
compensation. Our results are based on the galaxy catalogues and are hence only applicable for
the samples under consideration. The conclusions can be seen as a guide for future analytical
work, based on which the dark matter correlation can be reconstructed from the measured
auto- and cross-correlations.
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There have been theoretical attempts such as the higher order perturbation theory (for a review
see [Bernardeau et al. , 2002]) or the renormalised perturbation theory of
[Crocce & Scoccimarro, 2006a, Crocce & Scoccimarro, 2006b] that perform better in describ-
ing the dark matter clustering than linear theory. But even in terms of perturbation theory the
task to bridge the gap between dark matter and galaxies remains an open question.

Reconstruction Procedure

To conclude, we propose the following procedure to infer the matter clustering from lensing
and clustering measurements:

1. Measure galaxy-galaxy lensing signal for a certain lens galaxy sample and calculate ∆Σgm

from the tangential shear.
2. Measure the galaxy-galaxy clustering and calculate the projected correlation function
wgg(R). Integrate the result to obtain ∆Σgg.

3. Try to estimate the cluster virial radius of the galaxy sample under consideration. Use
this estimated R0 to correct for the central contributions in ∆Σ(R).

4. Make predictions for the transfer function and resulting matter autocorrelation func-
tions for a set of cosmological parameters and/or modification of gravity. Use these to
calculate Γ (lin)

mm and find the best fit parameters by comparison to the empirical result.

9.4 Effects Related to the Projected Correlation Functions

When we want to use galaxy-galaxy lensing and galaxy clustering measurements jointly, it
is important to account for the difference in the windows used for the projection. While
lensing has a very broad window, clustering is typically measured over 50 h−1Mpc only. This
shallow window can not completely remove the redshift space distortions on large scales and
a correction should be applied to recover the real space values. This correction can be well
approximated with linear theory and the Kaiser formalism. A second correction has to be
applied to the galaxy-matter cross-clustering inferred from the lensing to obtain the quantity
corresponding to the clustering measurements. In this context our results are idealised, since all
the projections were performed in real space and with a symmetric window of width 50 h−1Mpc
on each side. A more realistic study including the correct lensing windows could maybe improve
on our results.
We have to caution the use of cosmological N-body simulations in lensing studies. The missing
small scale clustering on scales below the force softening length can affect the excess surface
mass density to larger scales.

9.5 Future Prospects and Possible Improvements

Baryon Effects

Our approach has the problem that we are not considering the effect of the baryonic mat-
ter on the structures that form in the universe. We rather treat the baryonic matter as
non-interacting to account for the total gravitational potential. Simulations that include the
baryonic matter have shown that the baryons actually lead to a change in the dark matter halo
shape [Gnedin et al. , 2004]. This effect is known as adiabatic contraction. Consequences in
the context of galaxy-galaxy lensing were discussed by [Mandelbaum et al. , 2006a]. They find
that the contraction effect is negligible even for cluster-shape studies but that the stellar mass
can boost the excess surface mass density on scales of about 0.3 h−1Mpc. We however stick
to the N-body simulations since baryonic simulations lack sufficient volume to allow for reliable
conclusions on cosmological scales. Lensing studies with higher resolution simulations should
however be accompanied by a carefull treatment of baryonic effects.
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Halo Finding

In their LRG study [Reid et al. , 2008] find that mock catalogues created from FoF haloes have
a deficit in clustering at 1 h−1Mpc, which should be visible in the projected autocorrelation.
They argue that this effect is due to the tendency of the FoF algorithm to link nearby haloes. We
neither find such a deficit in the projected correlation nor the overly high satellite fractions they
report for FoF based HOD and finally decide to use the FoF haloes for our galaxy catalogues.
This discrepancy however strengthens the need for a systematic study of the differences between
HODs based on spherical overdensity and friends-of-friends halo finders.

Covariance Estimation

The internal error estimators bootstrap and jackknife were recently compared to external,
Monte Carlo based error estimators by [Norberg et al. , 2008]. They find that the internal
estimators fail on small and intermediate scales, while they have the advantage that no prior
knowledge of the underlying probability distribution is needed.
However, for the use of such internal error estimates the data set has to be a representative
realisation of this underlying probability distribution. Furthermore internal error estimates are
limited to the survey volume and can not account for cosmic variance or stochasticity on scales
larger than the ones observed.
Errors on the two-point clustering statistics depend on higher order statistics of the data and
unforeseen systematics might be missed by external estimates, since they consider only the
effects that have been included in the underlying theory. Thus a carefull theoretical modelling of
the covariance is timely. The extension of the work [Smith, 2008] towards projected correlation
functions and the excess surface mass density should provide lower bounds on the covariance
matrices. We also suspect that the noise in the measured covariance matrix might affect the
inversion - an effect that needs to be studied systematically.

Mass Resolution

The limited mass resolution of the simulations, especially the low mass cutoff for the haloes
might have an effect for our fitting procedure. The minimum halo mass is Mmin = 1.3 ×
1013 h−1M�. So it might occur that haloes that could host faint LRGs are not present in the
simulation. This is especially dramatic since those low mass haloes are much more abundant
than the high mass haloes.

Galaxy Profiles

We have not explored the possibility of a galaxy concentration different from the halo con-
centration, a fact that might arise from galaxies sinking to the halo centre due to dynamical
friction [Berlind & Weinberg, 2002]. In this case there might be also differences in the velocity
of dark matter and galaxies, finally affecting our redshift space results. In contrast to this
increased concentrations, halo mergers would cause a less concentrated galaxy population.

Inference of Cosmological Parameters

The possibility of constraining both the HOD and the cosmological parameters from the clus-
tering has been investigated by [Yoo et al. , 2006]. There is the important shortcoming, that
models based on different cosmologies can fit the data equally well, simply by relying on a
different set of HOD parameters [White & Padmanabhan, 2008]. One must use either higher
order statistics or a second measurement to break the degeneracies. The currently available
LRG data for the lensing are probably not sufficiently well constrained to lift this degeneracy
and the covariance is not sufficiently well understood to derive the confidence intervals.
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APPENDIX A

Notation and Constants

Gravitational constant G = 6.7× 10−8 erg cm gr−2

Speed of light c = 3.0× 1010 cm s
Planck constant h = 6.6× 10−27 erg s = 2π~ = 1.1× 10−27 erg s
Boltzmann constant kB = 1.4× 10−16 erg K−1= 8.6× 10−5 eV K−1

Proton mass mp = 1.7× 10−24 gr
Electron mass me = 9.1× 10−28 gr
Electron charge e = 4.8× 10−10 esu
Electron volt eV = 1.6× 10−12 erg
Thomson cross section σT = 6.7× 10−25 cm2

Solar mass M� = 2.0× 1033

Solar luminosity L� = 3.8× 1033 erg s−1

Solar distance D� = 1 AU=1.5× 1013 cm
Astronomical unit AU = 1.5× 1013 cm
Parsec pc = 3.1× 1018 cm = 3.3 ly
Year yr = 3.15× 107 s

Table A.1: Units

As common in cosmology we use the parsec as unit of distance

1 pc = 3.26 ly = 3.086× 1016 m.

It is often useful in cosmology to define a conformal time τ defined by adτ = dt. We will use
dots to denote derivatives with respect to the physical time t and primes to denote derivatives
with respect to conformal time τ where w ′ = a(t)ẇ and a(t) is the expansion factor.
All the calculations are performed in comoving coordinates and we account for the uncer-
tainty in the current value of the Hubble constant by writing it as H = hH0 where H0 =

100 km s−1 Mpc−1. This leads us to qoute comoving lengths in units of h−1Mpc and masses
in units of h−1M�.
To distinguish between radii in three dimensions and two dimensional projections we will use
an uppercase R for the latter in contrast to a r for the three dimensional case.
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gg galaxy-galaxy
gm galaxy-matter
mm matter-matter
GR general-relativity
EMT energy-momentum-tensor
EFE Einstein field equations
FRW Friedmann-Robertson-Walker
NFW Navarro, Frenk & White
EOS equation of state
HOD Halo Occupation Distribution
FT Fourier Transform
FFT Fast Fourier Transform
rms root mean square
rhs right hand side
lhs left hand side
wrt with respect to

Table A.2: List of Abbreviations
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